Zhang L Q, Amari S, Cichocki A. Natural Gradient Approach to Blind Separation of Over- and Under-Complete Mixtures // Proc of the International Workshop on Independent Component Analysis and Blind Signal Separation. Aussois, France, 1999: 455-460
[2]
Amari S. Natural Gradient Learning for Over- and Under-Complete Bases in ICA. Neural Computation, 1999, 11(8): 1875-1883
[3]
Amari S, Chen T P, Cichocki A. Non-Holonomic Constraints in Learning Algorithms for Blind Source Separation. Neural Computation, 2000, 12(7): 1463-1484
[4]
Cichocki A, Unbehauen R, Moszczyński L, et al. A New On-Line Adaptive Learning Algorithm for Blind Separation of Sources // Proc of the International Joint Conference on Neural Networks. Taiwan, China, 1994: 406-411
[5]
Amari S. Natural Gradient Works Efficiently in Learning. Neural Computation, 1998, 10(2): 251-276
[6]
Bell A J, Sejnowski T J. An Information Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation, 1995, 7(6): 1129-1159
[7]
Yang H H, Amari S. A Stochastic Natural Gradient Descent Algorithm for Blind Signal Separation // Proc of the IEEE Workshop on Neural Networks for Signal Processing. Kyoto, Japan, 1997: 436-444
[8]
Comon P. Independent Component Analysis, A New Concept? Signal Processing, 1994, 36(3): 287-314
[9]
Cichocki A, Amari S. Adaptive Blind Signal and Image Processing: Learning Algorithm and Applications. Chichester, UK: John Wiley, 2002