全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用语音非线性特征改进说话人识别的性能

, PP. 776-781

Keywords: 说话人识别,混沌,最大Lyapunov指数

Full-Text   Cite this paper   Add to My Lib

Abstract:

分析说话人发音过程中的非线性现象,通过计算38个汉语音素的最大Lyapunov指数验证语音内含混沌性.从不同侧面讨论语音非线性特征量的物理意义和计算方法,包括Lyapunov指数、二阶熵和相关维数,并将这些非线性特征用于说话人识别.在Gauss混合模型的说话人识别系统中,基于MFCC参数得到识别结果的基础上,用最大Lyapunov指数、二阶熵和相关维数再进行说话人的二次辨认,提高说话人识别的性能.实验结果表明非线性特征参数中包含有说话人特征的信息,因此可用于改进基于MFCC的识别性能.

References

[1]  Sabanal S, Nakagawa M. The Fractal Properties of Vocal Sounds and Their Application in the Speech Recognition Model. Chaos, Solitons and Fractals, 1996, 7(11): 1825-1843
[2]  Petry A, Barone D A C. Fractal Dimension Applied to Speaker Identification // Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Salt Lake City, USA, 2001, Ⅰ: 405-408
[3]  Jungpa S, Hong S, Gu J, et al. New Speaker Recognition Feature Using Correlation Dimension // Proc of the IEEE International Symposium on Industrial Electronics. Pusan, South Korea, 2001, Ⅰ: 505-507
[4]  Thompson C, Mulpur A, Mehta V, et al. Transition to Chaos in Acoustically Driven Flows. Journal of the Acoustical Society of America, 1991, 90(4): 2097-2108
[5]  Kumar A, Mullick S K. Nonlinear Dynamical Analysis of Speech. Journal of the Acoustical Society of America, 1996, 100(1): 615-629
[6]  Kumar A, Mullick S K. Attractor Dimension, Entropy and Modelling of Speech Time Series. Electronics Letters, 1990, 26(21): 1790-1792
[7]  Lü Jinghu, Lu Junan, Chen Shihua. The Chaos Time Series Analysis and Application. Wuhan, China: Wuhan University Press, 2002 (in Chinese) (吕金虎, 陆君安, 陈士华. 混沌时间序列分析及其应用. 武汉:武汉大学出版社, 2002)
[8]  Petry A, Barone D A C. Speaker Identification Using Nonlinear Dynamical Features. Chaos, Solitons and Fractals, 2002, 13 (2): 221-231
[9]  Reynolds D A, Rose R C. Robust Text-Independent Speaker Identification Using Gaussian Mixture Speaker Models. IEEE Trans on Speech and Audio Processing, 1995, 3(1): 72-83

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133