全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复杂系统中的模式发现:ε机原理及算法综述

, PP. 746-752

Keywords: ε机,因果态,模式发现

Full-Text   Cite this paper   Add to My Lib

Abstract:

复杂系统兼具混杂和涌现特性.模式发现旨在揭示系统的隐含模式,它是分析和理解复杂系统的新途径.ε机是理论物理的研究成果,它用形式语言来定义系统模式.本文介绍ε机的基本原理,以及它的性质和优点.对于ε机的两种重构算法:子树合并和因果态分割重构,用偶数过程的例子做了简单说明并详细比较两种算法的思想.基于重构算法,阐述统计复杂性的含义及其计算方法.最后,概述ε机在过去十几年的研究进展和应用现状,并对未来研究做了简单展望.

References

[1]  Shalizi C R, Crutchfield J P. Computational Mechanics: Pattern and Prediction, Structure and Simplicity. Journal of Statistical Physics, 2001, 104(3): 817-879
[2]  Shalizi C R. Causal Architecture, Complexity and Self-Organization in Time Series and Cellular Automata. Ph.D Dissertation. Madison, USA: University of Wisconsin. Physics Department, 2001
[3]  Crutchfield J P. The Calculi of Emergence: Computation, Dynamics and Induction. Physica D: Nonlinear Phenomena, 1994, 75(1/2/3): 11-54
[4]  Shalizi C R, Shalizi K L, Crutchfield J P. An Algorithm for Pattern Discovery in Time Series [EB/OL]. [2002-10-06]. http://arxiv.org/ps.cache/cs/pdf/0210/0210025.pdf
[5]  Crutchfield J P, Young K. Inferring Statistical Complexity. Physical Review Letters, 1989, 63(2): 105-108
[6]  Klinkner K, Shalizi C. An Algorithm for Building Markov Models from Time Series [EB/OL]. [2003-08-07]. http://www.cscs.umich. edu/ -crshalizi/CSSR
[7]  Feldman D P, Crutchfield J. Measure of Statistical Complexity: Why? Physics Letters A, 1998, 238(4/5): 244-252
[8]  Perry N, Binder P M. Finite Statistical Complexity for Sofic Systems. Physical Review E, 1999, 60(1): 459-463
[9]  Crutchfield J P. Is Anything Ever New? Considering Emergence // Cowan G, Pines D, Melzner D, eds. Complexity: Metaphors, Models, and Reality. Redwood City, USA: Addison Wesley, 1994: 479-497
[10]  Hanson J E. Computational Mechanics of Cellular Automata. Ph.D Dissertation. Berkeley, USA: University of California Berkeley. Physics Department, 1993
[11]  Upper D R. Theory and Algorithms for Hidden Markov Models and Generalized Hidden Markov Models. Ph.D Dissertation. Berkeley, USA: University of California Berkeley. Mathematics Department, 1997
[12]  Feldman D P. Computational Mechanics of Classical Spin Systems. Ph.D Dissertation. Davis, USA: University of California. Physics Department, 1998
[13]  Feldman D P, Crutchfield J P. Synchronizing to Periodicity: the Transient Information and Synchronization Time of Periodic Sequences. Advances in Complex Systems. 2004, 7(3/4): 329-355
[14]  Crutchfield J P, Feldman D P. Synchronizing to the Environment: Information Theoretic Constraints on Agent Learning. Advances in Complex Systems, 2001, 4(2): 251-264
[15]  Varn D P. Language Extraction from ZnS. Ph.D Dissertation. Knoxville, USA: University of Tennessee. Physics College, 2001
[16]  Delgado J, Sole R V. Collective-Induced Computation. Physical Review E, 1997, 55(3): 2338-2344
[17]  Delgado J, Sole R V. Characterizing Turbulence in Globally Coupled Maps with Stochastic Finite Automata. Physics Letters A, 2000, 270(12): 314-319
[18]  Goncalves W M, Pinto R D, Sartorelli J C, et al. Inferring Statistical Complexity in the Dripping Faucet Experiment. Physica A: Statistical Mechanics and Its Applications, 1998, 257(1): 385-389
[19]  Palmer A J, Fairall C W, Brewer W A. Complexity in the Atmosphere. IEEE Trans on Geoscience and Remote Sensing, 2000, 38(4): 2056-2063
[20]  Palmer A J, Schneider T L, Benjamin A L. Inference Versus Imprint in Climate Modeling. Advances in Complex Systems, 2002, 5(1): 73-89
[21]  Nerukh D, Karvounis G, Glen R C. Complexity of Classical Dynamics of Molecular Systems: I. Methodology. Journal of Chemical Physics, 2002, 117(21): 9611-9617
[22]  Nerukh D, Karvounis G, Glen R C. Complexity of Classical Dynamics of Molecular Systems: II. Finite Statistical Complexity of Water-Na+ System. Journal of Chemical Physics, 2002, 117(21): 9618-9622
[23]  Nerukh D, Karvounis G, Glen R C. Dynamic Complexity of Chaotic Transitions in High-Dimensional Classical Dynamics: Leu-Enkephalin Folding[EB/OL]. [2005-11-23]. http://www.chem.pwf.cam.ac.uk/-dn232/ pub/ec.pdf
[24]  Wessel N, Schwarz U, Saparin P I, et al. Symbolic Dynamics for Medical Data Analysis // Klonowski W ed. Attractors, Signals, and Synergetic. Lengerich, Germany: Pabst Science Publishers, 2002: 45-61
[25]  Clarke R W, Freeman M P, Watkins N W. Application of Computational Mechanics to the Analysis of Natural Data: An Example in Geomagnetism. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2003, 67(2): 126-203
[26]  Chin S C. Real Time Anomaly Detection in Complex Dynamic Systems. Ph.D Dissertation. Park, USA: The Pennsylvania State University. Department of Electrical Engineering, 2004
[27]  Ray A. Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection. Signal Processing, 2004, 84(7): 1115-1130
[28]  Patil G. Geoinformatic Surveillance for Hotspot Detection and Prioritization [EB/OL]. [2005-11-23]. http://www.stat.psu.edu/~gpp/ pdfs /Prospectus%2016%20overview.pdf
[29]  Amit S, Soundar K, Mark G, et al. Supply-Chain Networks: A Complex Adaptive Systems Perspective. International Journal of Production Research, 2005, 43(20): 4235-4265
[30]  Bochmann O. Probabilistic Approaches in Multi-Agent Systems for Manufacturing Coordination and Control. Ph.D Dissertation. Louvain, Belgium: Katholieke Universiteit Leuven. Department of Mechanical Engineering, 2005
[31]  Bertello G, Arduin P J, Boschetti F, et al. First Experiments in the Application of Computational Mechanics to the Analysis of Seismic Time Series [EB/OL]. [2005-11-23]. http://www.per.marine. csiro.au/staff/Fabio.Boschetti/3054CO/papers/epsilon_final.pdf
[32]  Pei Wenjiang, Yang Lüxi. A Statistical Complexity Measure and Its Applications to the Analysis of Heart Rate Variability. Acta Biophysica Sinica, 2000, 16(3): 562-568 (in Chinese) (裴文江, 杨绿溪. 一种统计复杂性测度及在心率变异信号分析中的应用. 生物物理学报, 2000, 16(3): 562-568)
[33]  Ay N, Crutchfield J P. Reductions of Hidden Information Sources. Journal of Statistical Physics, 2005, 120(3/4): 659-684
[34]  Blum L. Lectures on Theory of Computation and Complexity over the Reals (or an Arbitrary Ring) // Jen E, ed. Lectures in the Sciences of Complexity. Milano, Italy: Addison Wesley, 1990: 1-47
[35]  Doya K. Reinforcement Learning in Continuous Time and Space. Neural Computation, 2000, 12(1): 219-245

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133