全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于混合径向基神经网络的建模及其逆模控制研究

, PP. 734-738

Keywords: 标准径向基神经网络,混合径向基神经网络,机理模型,逆模控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的基于机理或局部线性化模型的控制策略不足以解决越来越复杂的控制问题,而神经网络用于控制也存在泛化能力差等缺陷,因此本文提出一种将被控对象已知机理和RBF神经网络结合起来实现逆模控制的方法.一方面能发挥神经网络非线性逼近的强大功能,另一方面利用被控对象已知机理信息指导神经网络的收敛方向,改进神经网络的泛化能力.由此方法设计的逆模控制器,在保证控制精度的前提下,速度远快于标准径向基神经网络逆模控制器,且对扰动、时延、非线性及对象参数的摄动有较强的适应能力,具有良好的控制品质.

References

[1]  Wang Xudong, Shao Huihe. RBFNN Theory and Its Applications in Controlling. Information and Control, 1997, 26(4): 272-284 (in Chinese) (王旭东,邵惠鹤.RBF神经网络理论及其在控制中的应用.信息与控制, 1997, 26(4): 272-284)
[2]  Wang L, Zhang H T, Chen Z H. Hybrid RBF Neural Network Based Prefractionator Modeling and Control // Proc of the International Conference on Control and Automation. Xiamen, China, 2002: 463-467
[3]  Bhartiya S, Whiteley J R. Benefits of Factorized RBF-Based NMPC. Computers and Chemical Engineering, 2002, 26(9): 1185-1199
[4]  Platt J C. Resource Allocation Networks for Function Interpolation. Neural Computation, 1991, 3(2): 213-215
[5]  Zhang Haitao, Chen Zonghai, Xiang Wei, et al. A Fast Neural Network Control Strategy of a Severe Nonlinear System. Pattern Recognition and Artificial Intelligence, 2003, 16(4): 385-389 (in Chinese) (张海涛,陈宗海,向 微,等.强非线性系统的一种快速神经网络控制策略.模式识别与人工智能, 2003, 16(4): 385-389)
[6]  Wang Lei, Chen Zonghai, Zhang Haitao, et al. Study of Hybrid Modeling Strategy for Complex Processes. Journal of System Simulation, 2004, 16(8): 1794-1796,1804 (in Chinese) (王 雷,陈宗海,张海涛,等.复杂过程对象混合建模策略的研究,系统仿真学报, 2004, 16(8): 1794-1796,1804)
[7]  Zhang Haitao, Chen Zonghai, Xiang Wei, et al. An Algorithm of Modeling and Control Based on Mechanism Hybrid Adaptive Time Delay Neural Network. Journal of System Simulation, 2004, 16(12): 2709-2712 (in Chinese) (张海涛,陈宗海,向 微,等.机理混合自适应时延神经网络建模和控制算法.系统仿真学报, 2004, 16(12): 2709-2712)
[8]  Chen T P, Chen H. Approximation Capability to Functions of Several Variables, Nonlinear Functions, and Operators by Radial Basis Functional Neural Networks. IEEE Trans on Neural Networks, 1995, 6(4): 904-910
[9]  Chen Zonghai. Process System Modeling and Simulation. Hefei, China: University of Science and Technology of China Press,1997 (in Chinese) (陈宗海.过程系统建模与仿真.合肥:中国科学技术大学出版社, 1997)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133