Wang Xudong, Shao Huihe. RBFNN Theory and Its Applications in Controlling. Information and Control, 1997, 26(4): 272-284 (in Chinese) (王旭东,邵惠鹤.RBF神经网络理论及其在控制中的应用.信息与控制, 1997, 26(4): 272-284)
[2]
Wang L, Zhang H T, Chen Z H. Hybrid RBF Neural Network Based Prefractionator Modeling and Control // Proc of the International Conference on Control and Automation. Xiamen, China, 2002: 463-467
[3]
Bhartiya S, Whiteley J R. Benefits of Factorized RBF-Based NMPC. Computers and Chemical Engineering, 2002, 26(9): 1185-1199
[4]
Platt J C. Resource Allocation Networks for Function Interpolation. Neural Computation, 1991, 3(2): 213-215
[5]
Zhang Haitao, Chen Zonghai, Xiang Wei, et al. A Fast Neural Network Control Strategy of a Severe Nonlinear System. Pattern Recognition and Artificial Intelligence, 2003, 16(4): 385-389 (in Chinese) (张海涛,陈宗海,向 微,等.强非线性系统的一种快速神经网络控制策略.模式识别与人工智能, 2003, 16(4): 385-389)
[6]
Wang Lei, Chen Zonghai, Zhang Haitao, et al. Study of Hybrid Modeling Strategy for Complex Processes. Journal of System Simulation, 2004, 16(8): 1794-1796,1804 (in Chinese) (王 雷,陈宗海,张海涛,等.复杂过程对象混合建模策略的研究,系统仿真学报, 2004, 16(8): 1794-1796,1804)
[7]
Zhang Haitao, Chen Zonghai, Xiang Wei, et al. An Algorithm of Modeling and Control Based on Mechanism Hybrid Adaptive Time Delay Neural Network. Journal of System Simulation, 2004, 16(12): 2709-2712 (in Chinese) (张海涛,陈宗海,向 微,等.机理混合自适应时延神经网络建模和控制算法.系统仿真学报, 2004, 16(12): 2709-2712)
[8]
Chen T P, Chen H. Approximation Capability to Functions of Several Variables, Nonlinear Functions, and Operators by Radial Basis Functional Neural Networks. IEEE Trans on Neural Networks, 1995, 6(4): 904-910
[9]
Chen Zonghai. Process System Modeling and Simulation. Hefei, China: University of Science and Technology of China Press,1997 (in Chinese) (陈宗海.过程系统建模与仿真.合肥:中国科学技术大学出版社, 1997)