全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种假设验证框架下的实时道路车辆检测方法*

, PP. 722-726

Keywords: 车辆检测,假设验证,Gabor滤波器,支撑向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍一种基于Gabor特征和多分辨率的车辆检测方法.该方法首先在假设产生阶段根据道路场景图像的消失点确定图像的兴趣区域,以垂直和水平边缘为依据产生相应兴趣区域的假设链,最后将各兴趣区域假设链合并,产生最终的假设.验证阶段用支撑向量机分类器验证假设正确与否,在保证鲁棒性的同时,提高实时性.此方法在假设产生阶段大大减少非兴趣区域对系统计算资源的消耗,减少计算负担,且在假设验证阶段有效减少伪目标对检测率的影响.实验表明,本文算法处理速度可达20帧/s,检测率在90%以上.

References

[1]  Zheng Nanning, Tang Shuming, Cheng Hong, et al. Toward Intelligent Driver-Assistance and Safety Warning System. IEEE Intelligent Systems, 2004, 19(2): 8-11
[2]  Sun Zehang, Miller R, Bebis G, et al. A Real-Time Precrash Vehicle Detection System // Proc of the 6th IEEE Workshop on Applications of Computer Vision. Orland, USA, 2002: 171-176
[3]  Broggi A, Cerri P, Antonello P C. Multi-Resolution Vehicle Detection Using Artificial Vision // Proc of the IEEE International Symposium on Intelligent Vehicle. Parma, Italy, 2004: 310-314
[4]  Du Y, Papanikolopoulos N P. Real-Time Vehicle Following through a Novel Symmetry-Based Approach // Proc of the IEEE International Conference on Robotics and Automation. Albuquerque, USA, 1997, Ⅳ: 3160-3165
[5]  Batavia P H, Pomerleau D E, Thorpe C E. Overtaking Vehicle Detection Using Implicit Optical Flow // Proc of the IEEE Conference on Intelligent Transportation System. Boston, USA, 1997: 729-734
[6]  Kutsuma Y, Yaguchi H, Hamamoto T. Real-Time Lane Line and Forward Vehicle Detection by Smart Image Sensor // Proc of the IEEE International Symposium on Communications and Information Technology. Sapporo, Japan, 2004, Ⅱ: 957-962
[7]  Rasmussen C. Grouping Dominant Orientations for Ill-Structured Road Following // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅰ: 470-477
[8]  Gabor D. Communication Theory and Physics. IEEE Trans on Information Theory, 1953, 1(1): 48-59
[9]  Sun Zehang, Miller R, Bebis G. On-Road Vehicle Detection Using Evolutionary Gabor Filter Optimization. IEEE Trans on Intelligent Transportation Systems, 2005, 6(2): 125-137
[10]  Li Li, Song Jingyan, Wang Feiyue, et al. IVS 05: New Developments and Research Trends for Intelligent Vehicles. IEEE Intelligent Systems, 2005, 20(4): 10-14
[11]  Liu Tie, Zheng Nanning, Zhao Li, et al. Learning Based Symmetric Feature Selection for Vehicle Detection //Proc of the IEEE International Symposium on Intelligent Vehicle. Las Vegas, USA, 2005:124-129

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133