全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种混合策略的Pareto演化规划*

, PP. 794-800

Keywords: 多目标优化,Pareto最优前沿,混合策略,演化规划

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种多目标演化算法——混合策略Pareto演化规划(MixedStrategiesParetoEvolutionaryProgramming,MSPEP).借鉴强度ParetoII演化算法的个体比较技术,通过计算个体位序的Pareto强度值进行比较排序,混合策略变异机制用于指导算法有效搜索过程.标准测试函数的实验结果验证算法的通用性和有效性.算法搜索的解集能快速逼近Pareto最优前沿.

References

[1]  Srinivas N, Deb K. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 1994, 2(3): 221-248
[2]  Zitzler E. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D Dissertation. Zurich, Switzerland: Swiss Federal Institute of Technology, 1999
[3]  Deb K, Agrawal S, Pratap A, et al. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II // Proc of the Parallel Problem Solving from Nature VI Conference. Paris, France, 2000: 849-858
[4]  Corne D W, Knowles J D, Oates M J. The Pareto Envelope-Based Selection Algorithm for Multiobjective Optimisation // Proc of the Parallel Problem Solving from Nature VI Conference. Paris, France, 2000: 839-848
[5]  Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. Technical Report, 103, Zurich, Switzerland: Swiss Federal Institute of Technology. Computer Engineering and Networks Laboratory, 2001
[6]  Laumanns M, Thiele L, Zitzler E. Archiving with Guaranteed Convergence and Diversity in Multi-Objective Optimization // Proc of the Genetic and Evolutionary Computation Conference. New York, USA: Morgan Kaufmann Publishers, 2002: 439-447
[7]  Sim K B, Kim J Y, Lee D W. Game Theory Based Coevolutionary Algorithm: A New Computational Coevolutionary Approach. International Journal of Control, Automation, and Systems, 2004, 2(4): 463-474
[8]  Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans on Evolutionary Computation, 1999, 3(4): 257-271
[9]  Yao Xin, Liu Yong, Lin Guangming. Evolutionary Programming Made Faster. IEEE Trans on Evolutionary Computation, 1999, 3(2): 82-102
[10]  Iwamatsu M. Generalized Evolutionary Programming with Lévy-Type Mutation. Computer Physics Communications, 2002, 147(8): 729-732
[11]  Lee C Y, Yao X. Evolutionary Programming Using Mutations Based on the Levy Probability Distribution. IEEE Trans on Evolutionary Computation, 2004, 8(1): 1-13
[12]  Ji Mingjun, Tang Huanwen, Guo Juan. A Single-Point Mutation Evolutionary Programming. Information Processing Letters, 2004, 90(2): 293-299
[13]  Zitzler E, Marco L, Stefan B. A Tutorial on Evolutionary Multiobjective Optimization // Proc of the Workshop on Multiple Objective Metaheuristics. Berlin, Germany: Springer, 2004: 3-37
[14]  Silverman B W. Density Estimation for Statistics and Data Analysis. London, UK: Chapman and Hall, 1986
[15]  Deb K. Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. Evolutionary Computation, 1999, 7(3): 205-230
[16]  Dong Hongbin, He Jun, Huang Houkuan, et al. A Mixed Mutation Strategies Evolutionary Programming Based Species Conservation for Function Optimization // Proc of the 4th Mexican International Conference on Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2005: 593-602

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133