全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

神经模糊网络特征选择*

, PP. 739-745

Keywords: 神经模糊网络,隶属度函数,网络剪枝,特征选择

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于人工神经网络的特征选择算法一般可以看作是剪枝算法的一个特例:通过剪枝输入节点,计算网络输出对该输入节点对应特征的敏感性.但这些方法往往要求首先对数据做归一化的工作,这可能会改变原数据具备的对分类很重要的某些性质.神经模糊网络是具有自学习能力的模糊推理系统,本文将其与基于隶属度空间的剪枝技术结合起来提出新的特征选择算法.其特点是隶属度函数是自适应学习的,且学习过程在特征选择之前完成.分别对自然数据和人工数据进行实验,并与其它方法相比,结果证明该算法是有效的.

References

[1]  Wang L C, Der S Z, Nasrabadi N M. Automatic Target Recognition Using a Feature-Decomposition and Data-Decomposition Modular Neural Network. IEEE Trans on Image Processing, 1998, 7(8): 1113-1121
[2]  Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, USA, 2001, Ⅰ: 511-518
[3]  Dash M, Liu H. Feature Selection for Classification. Intelligent Data Analysis, 1997, 1(3): 131-156
[4]  Reed R. Pruning Algorithms-A Survey. IEEE Trans on Neural Networks, 1993, 4(5): 740-747
[5]  Verikas A, Bacauskiene M. Feature Selection with Neural Networks. Pattern Recognition Letters, 2002, 23(11): 1323-1335
[6]  Ruck D W, Rogers S K, Kabrisky M. Feature Selection Using a Multilayer Perceptron. Journal of Neural Network Computing, 1990, 2(1): 40-48
[7]  Mao J C, Mohiuddin K, Jain A K. Parsimonious Network Design and Feature Selection through Node Prunning // Proc of the 12th IAPR International Conference on Pattern Recognition. Jerusalem, Israel, 1994, Ⅱ: 622-624
[8]  Jia Pei, Sang Nong. Feature Selection Using a Radial Basis Function Networks and Fuzzy Set Theoretic Measures // Proc of the 3th Symposium on Multispectral Image Processing and Pattern Recognition. Beijing, China, 2003:109-114
[9]  De R K, Pal N R, Pal S K. Feature Analysis: Neural Network and Fuzzy Set Theoretic Approaches. Pattern Recognition, 1997, 30(10): 1579-1590
[10]  Duda R O, Hart P E, Stork D G. Pattern Classification. New York, USA: Wiley & Son, 1998
[11]  Rezaee M R, Goedhart B, Lelieveldt B P F, et al. Fuzzy Feature Selection. Pattern Recognition, 1999, 32(3): 2011-2019
[12]  Sun C T, Jang J S. A Neuro-Fuzzy Classifier and Its Applications// Proc of the 2nd IEEE International Conference on Fuzzy Systems. San Francisco, USA, 1993, Ⅰ: 94-98
[13]  Chakraborty D, Pal N R. A Neuro-Fuzzy Scheme for Simultaneous Feature Selection and Fuzzy Rule-Based Classification. IEEE Trans on Neural Networks, 2004, 15(1): 110-123
[14]  Kim I I, Lee J H, Bang E O. A New Approach to Adaptive Membership Function for Fuzzy Inference System // Proc of the 3rd International Conference on Knowledge-Based Intelligent Infomation Engineering Systems. Adelaide, Australia, 1999: 112-116
[15]  Anderson E. The Irises of the Gaspe Peninsula. Bulletin of the American Iris Society, 1935, 59: 2-5
[16]  Belue L M, Bauer K W. Determining Input Feature for Multilayer Perceptrons. Neurocomputing, 1995, 7(2): 111-121
[17]  Guyon I. Design of Experiments for the NIPS 2003 Variable Selection Benchmark [EB/OL]. [2003-07-01]. http://www.clopinet.com/isabelle/Projects/NIPS2003/Slides/NIPS2003-Datasets. pdf
[18]  Foley D H. Consideration of Sample and Feature Size. IEEE Trans on Information Theory, 1972, 18(5): 618-626

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133