全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于蚁群优化的无线传感器网络能量均衡路由算法*

, PP. 275-280

Keywords: 能量均衡,网络寿命,蚁群优化(ACO),NP完全问题

Full-Text   Cite this paper   Add to My Lib

Abstract:

如何有效使用无线传感器节点有限的能量来最大化网络的寿命是无线传感器网络研究的重要问题.网络能量是否均衡消耗对网络寿命有着决定性的影响.本文将蚁群优化算法应用于无线传感器网络的路径选择,提出一种基于蚁群优化的无线传感器网络能量均衡路由算法.该算法利用蚁群的动态适应性和寻优能力在网络最短路径和能量均衡消耗之间进行平衡,以达到网络能量的优化均衡消耗,进而延长整个网络的寿命.仿真实验表明,该算法在延长网络寿命方面效果较显著,与最短路径路由算法相比网络寿命延长超过33%.

References

[1]  Gutjahr W J. A GraphBased Ant System and Its Convergence. Future Generations Computer Systems, 2000, 16(9): 873888
[2]  Gutjahr W J. ACO Algorithms with Guaranteed Convergence to the Optimal Solution. Information Processing Letters, 2002, 82(3): 145153
[3]  Stutzle T, Dorigo M. A Short Convergence Proof for a Class of ACO Algorithms. IEEE Trans on Evolutionary Computation, 2002, 6(4): 358365
[4]  Sim K M, Sun W H. Ant Colony Optimization for Routing and LoadBalancing: Survey and New Directions. IEEE Trans on Systems, Man, and Cybernetics, 2003, 33(5): 560572
[5]  Gunes M, Spaniol O. AntRoutingAlgorithms for Mobile MultiHop AdHoc Networks // Proc of the International Workshop on Next Generation Network Technologies. Rousse, Bulgaria, 2002: 1024
[6]  Liu Z, Kwiatkowska M Z, Constantinou C. A Swarm Intelligence Routing Algorithm for MANETs // Proc of the 3rd IASTED International Conference on Communications, Internet and Information Technology. St. Thomas, USA, 2004: 484489
[7]  Liu Zhenyu, Kwiatkowska M Z, Constantinou C. A Biologically Inspired Congestion Control Routing Algorithm for MANETs // Proc of the 3rd International Conference on Pervasive Computing and Communications Workshops. Kauai Island, USA, 2005: 226231
[8]  Dorigo M, Gambardella L M. Ant Colony System: a Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Trans on Evolutionary Computation, 1997, 1(1): 5366
[9]  Bullnheimer B, Hartl R F, Strauss C. Applying the Ant System to the Vehicle Routing Problem // Voss S, Martello S, Osman I H, eds. MetaHeuristics: Advances and Trends in Local Search Paradigms for Optimization. Boston, USA: Kluwer Academics, 1998: 109120
[10]  Gutjahr W J. A Generalized Convergence Result for the Graphbased Ant System Metaheuristic. Probability in the Engineering and Informational Sciences, 2003, 17(4): 545569
[11]  Hussein O, Saadawi T. Ant Routing Algorithm for Mobile AdHoc Networks (ARAMA) // Proc of the IEEE International Conference on Performance, Computing, and Communications. Phoenix, USA, 2003: 281290
[12]  Bonabeau E, Dorigo M, Theraulaz G. Inspiration for Optimization from Social Insect Behavior. Nature, 2000, 406(6): 3942
[13]  Intanagonwiwat C, Govindan R, Estrin D. Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks // Proc of the 6th Annual ACM/IEEE Conference on Mobile Computing and Networking. Boston, USA, 2000: 5667
[14]  Akyildiz I F, Su Welian, Sankarasubramaniam Y, et al. A Survey on Sensor Networks. IEEE Communications Magazine, 2002, 40(8): 102114
[15]  Akkaya K, Younis M. A Survey on Routing Protocols for Wireless Sensor Networks. Ad Hoc Networks, 2005, 3(3): 325349
[16]  Shah R C, Rabaey J M. Energy Aware Routing for Low Energy Ad Hoc Sensor Networks // Proc of the IEEE Wireless Communications and Networking Conference. New York, USA, 2002, Ⅰ: 350355
[17]  Wang Z, Crowcroft J. Quality of Service Routing for Supporting Multimedia Applications. IEEE Journal on Selected Areas in Communications, 1996, 14(7): 12281234

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133