Vapnik V N. The Nature of Statistical Learning Theory. London, UK: Spring-Verlag, 1995
[2]
Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167
[3]
Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge University Press, 2000
[4]
Jia Hongbin, Murphey Y L, Gutchess D, et al. Identifying Knowledge Domain and Incremental New Class Learning in SVM // Proc of the IEEE International Joint Conference on Neural Networks. Montréal, Canada, 2005, Ⅴ: 2742-2747
[5]
Wan Sheng, Banta L E. Parameter Incremental Learning Algorithm for Neural Networks. IEEE Trans on Neural Networks, 2006, 17(6): 1424-1438
[6]
Sang Nong, Zhang Rong, Zhang Tianxu. Incremental Learning Algorithm of a Modified Minimum Distance Classifier. Pattern Recognition and Artificial Intelligence, 2007, 20(3): 358-364 (in Chinese)(桑 农,张 荣,张天序.一类改进的最小距离分类器的增量学习算法.模式识别与人工智能, 2007, 20(3): 358-364)
[7]
Li Kai, Huang Houkuan. Research on Incremental Learning Algorithm of Support Vector Machine. Journal of Northern Jiaotong University, 2003, 27(5): 34-37 (in Chinese)(李 凯,黄厚宽.支持向量机增量学习算法研究.北方交通大学学报, 2003, 27(5): 34-37)
[8]
Kong Rui, Zhang Bing. A Fast Incremental Learning Algorithm for Support Vector Machine. Control and Decision, 2005, 20(10): 1129-1136 (in Chinese)(孔 锐,张 冰.一种快速支持向量机增量学习算法.控制与决策, 2005, 20(10): 1129-1136)
[9]
Mitra P, Murthy C A, Pal S K. Data Condensation in Large Databases by Incremental Learning with Support Vector Machines // Proc of the International Conference on Pattern Recognition. Barcelona, Spain, 2000, Ⅱ: 2708-2711
[10]
Xiao Xianbo, Hu Guangshu. An Incremental Support Vector Machine Based Speech Activity Detection Algorithm // Proc of the 27th Annual International Conference of the Engineering in Medicine and Biology Society. Shanghai, China, 2005: 4224-4226
[11]
Domeniconi C, Gunopulos D. Incremental Support Vector Machine Construction // Proc of the IEEE International Conference on Data Mining. San Jose, USA, 2001: 589-592
[12]
An Jinlong, Wang Zhengou, Ma Zhenping. An Incremental Learning Algorithm for Support Vector Machine // Proc of the 2nd International Conference on Machine Learning and Cybernetics. Xian, China, 2003, Ⅱ: 1153-1156
[13]
Katagiri S, Abe S. Selecting Support Vector Candidates for Incremental Training // Proc of the IEEE International Conference on Systems, Man and Cybernetics. Waikoloa, USA, 2005, Ⅱ: 1258-1263
[14]
Katagiri S, Abe S. Incremental Training of Support Vector Machines Using Hyperspheres. Pattern Recognition Letters, 2006, 27(13): 1495-1507
[15]
Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge, UK: Cambridge University Press, 2004
[16]
Joachims T. Making Large-Scale SVM Learning Practical // Schlkopf B, Burges C J C, Smola A, eds. Advances in Kernel Methods: Support Vector Machines. Cambridge, USA: MIT Press, 1999: 169-184
[17]
Newman D J, Hettich S, Blake C L, et al. UCI Repository of Machine Learning Databases [DB/OL]. [2009-03-20], http://www.ics.uci.edu/~mlearn/MLRepository.html
[18]
DELVE-Benchmark Repository-A Collection of Artificial and Real-World Data Sets [DB/OL]. [2009-03-20]. http://www.cs.utoronto.ca/~delve/data/datasets.html
[19]
Benchmark Repository Used for the STATLOG Competition. [1996-03-20]. ftp://ftp.ncc.up.pt/pub/statlog
[20]
Laskov P. Feasible Direction Decomposition Algorithms for Training Support Vector Machines. Machine Learning, 2002, 46(1/2/3): 315-349
[21]
Platt J C. Fast Training of Support Vector Machines Using Sequential Minimal Optimization // Schlkopf B, Burges C J C, Smola A J, eds. Advances in Kernel Methods: Support Vector Learning. Cambridge, USA: MIT Press, 1999: 185-208
[22]
Laskov P, Gehl C, Krüger S, et al. Incremental Support Vector Learning: Analysis, Implementation and Applications. Journal of Machine Learning Research, 2006, 7: 1909-1936
[23]
Cauwenberghs G, Poggio T. Incremental and Decremental Support Vector Machine Learning // Leen T K, Dietterich T G, Tresp V, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2001, XIII: 409-415
[24]
Bordes A, Ertekin S, Wesdon J, et al. Fast Kernel Classifiers for Online and Active Learning. Journal of Machine Learning Research, 2005, 6: 1579-1619
[25]
Kivinen J, Smola A J, Williamson R C. Online Learning with Kernels. IEEE Trans on Signal Processing, 2004, 52(8): 2165-2176
[26]
Cavallanti G, Cesa-Bianchi N, Gentile C. Tracking the Best Hyperplane with a Simple Budget Perceptron. Machine Learning, 2007, 69(2/3): 143-167