全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

使用模拟切削算法的SVM增量学习机制

, PP. 491-500

Keywords: 支持向量机(SVM),增量学习,模拟切削算法,切削面,切削厚度

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出使用模拟切削算法的SVM增量学习机制。模拟切削算法在核函数映射的特征空间中计算每个样本的预期贡献率,仅选取预期贡献率较高的样本参与SVM增量学习,有效解决传统SVM增量学习代价高、目标样本选取准确性低、分类器缺乏鲁棒性的问题。一个样本的预期贡献率采用通过该样本的映射目标的合适分离面对两类样本的识别率来表示。对目标样本的选取酷似果蔬削皮的过程,所提算法由此得名。基准数据实验表明,文中算法在学习效率和分类器泛化性能上具有突出优势。在有限资源学习问题上的应用表明该算法在大规模学习任务上的良好性能。

References

[1]  Vapnik V N. The Nature of Statistical Learning Theory. London, UK: Spring-Verlag, 1995
[2]  Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167
[3]  Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge University Press, 2000
[4]  Jia Hongbin, Murphey Y L, Gutchess D, et al. Identifying Knowledge Domain and Incremental New Class Learning in SVM // Proc of the IEEE International Joint Conference on Neural Networks. Montréal, Canada, 2005, Ⅴ: 2742-2747
[5]  Wan Sheng, Banta L E. Parameter Incremental Learning Algorithm for Neural Networks. IEEE Trans on Neural Networks, 2006, 17(6): 1424-1438
[6]  Sang Nong, Zhang Rong, Zhang Tianxu. Incremental Learning Algorithm of a Modified Minimum Distance Classifier. Pattern Recognition and Artificial Intelligence, 2007, 20(3): 358-364 (in Chinese)(桑 农,张 荣,张天序.一类改进的最小距离分类器的增量学习算法.模式识别与人工智能, 2007, 20(3): 358-364)
[7]  Li Kai, Huang Houkuan. Research on Incremental Learning Algorithm of Support Vector Machine. Journal of Northern Jiaotong University, 2003, 27(5): 34-37 (in Chinese)(李 凯,黄厚宽.支持向量机增量学习算法研究.北方交通大学学报, 2003, 27(5): 34-37)
[8]  Kong Rui, Zhang Bing. A Fast Incremental Learning Algorithm for Support Vector Machine. Control and Decision, 2005, 20(10): 1129-1136 (in Chinese)(孔 锐,张 冰.一种快速支持向量机增量学习算法.控制与决策, 2005, 20(10): 1129-1136)
[9]  Mitra P, Murthy C A, Pal S K. Data Condensation in Large Databases by Incremental Learning with Support Vector Machines // Proc of the International Conference on Pattern Recognition. Barcelona, Spain, 2000, Ⅱ: 2708-2711
[10]  Xiao Xianbo, Hu Guangshu. An Incremental Support Vector Machine Based Speech Activity Detection Algorithm // Proc of the 27th Annual International Conference of the Engineering in Medicine and Biology Society. Shanghai, China, 2005: 4224-4226
[11]  Domeniconi C, Gunopulos D. Incremental Support Vector Machine Construction // Proc of the IEEE International Conference on Data Mining. San Jose, USA, 2001: 589-592
[12]  An Jinlong, Wang Zhengou, Ma Zhenping. An Incremental Learning Algorithm for Support Vector Machine // Proc of the 2nd International Conference on Machine Learning and Cybernetics. Xian, China, 2003, Ⅱ: 1153-1156
[13]  Katagiri S, Abe S. Selecting Support Vector Candidates for Incremental Training // Proc of the IEEE International Conference on Systems, Man and Cybernetics. Waikoloa, USA, 2005, Ⅱ: 1258-1263
[14]  Katagiri S, Abe S. Incremental Training of Support Vector Machines Using Hyperspheres. Pattern Recognition Letters, 2006, 27(13): 1495-1507
[15]  Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge, UK: Cambridge University Press, 2004
[16]  Joachims T. Making Large-Scale SVM Learning Practical // Schlkopf B, Burges C J C, Smola A, eds. Advances in Kernel Methods: Support Vector Machines. Cambridge, USA: MIT Press, 1999: 169-184
[17]  Newman D J, Hettich S, Blake C L, et al. UCI Repository of Machine Learning Databases [DB/OL]. [2009-03-20], http://www.ics.uci.edu/~mlearn/MLRepository.html
[18]  DELVE-Benchmark Repository-A Collection of Artificial and Real-World Data Sets [DB/OL]. [2009-03-20]. http://www.cs.utoronto.ca/~delve/data/datasets.html
[19]  Benchmark Repository Used for the STATLOG Competition. [1996-03-20]. ftp://ftp.ncc.up.pt/pub/statlog
[20]  Laskov P. Feasible Direction Decomposition Algorithms for Training Support Vector Machines. Machine Learning, 2002, 46(1/2/3): 315-349
[21]  Platt J C. Fast Training of Support Vector Machines Using Sequential Minimal Optimization // Schlkopf B, Burges C J C, Smola A J, eds. Advances in Kernel Methods: Support Vector Learning. Cambridge, USA: MIT Press, 1999: 185-208
[22]  Laskov P, Gehl C, Krüger S, et al. Incremental Support Vector Learning: Analysis, Implementation and Applications. Journal of Machine Learning Research, 2006, 7: 1909-1936
[23]  Cauwenberghs G, Poggio T. Incremental and Decremental Support Vector Machine Learning // Leen T K, Dietterich T G, Tresp V, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2001, XIII: 409-415
[24]  Bordes A, Ertekin S, Wesdon J, et al. Fast Kernel Classifiers for Online and Active Learning. Journal of Machine Learning Research, 2005, 6: 1579-1619
[25]  Kivinen J, Smola A J, Williamson R C. Online Learning with Kernels. IEEE Trans on Signal Processing, 2004, 52(8): 2165-2176
[26]  Cavallanti G, Cesa-Bianchi N, Gentile C. Tracking the Best Hyperplane with a Simple Budget Perceptron. Machine Learning, 2007, 69(2/3): 143-167

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133