全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种自适应最大拒绝鉴别分析及其鉴别矢量集

, PP. 501-507

Keywords: 特征抽取,最大拒绝分类器(MRC),线性鉴别分析(LDA),Boosting

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对MRC-Boosting方法中的弱分类器二值化以及鉴别矢量不正交等问题,提出一种自适应最大拒绝鉴别分析(AdaMRDA),进一步提高分类性能。通过已抽取的鉴别特征到期望中心的距离,设计一种自适应权重调整方法,使得后面得到的鉴别矢量更加有利于分类,并且给出最佳正交鉴别矢量集的求解方程。最后,通过在2个数据库上的实验证明,AdaMRDA方法在分类性能上明显优于MRC-Boosting方法及相关方法。

References

[1]  Liu C J. A Bayesian Discriminating Features Method for Face Detection. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(6): 725-740
[2]  Freund Y, Schapire R E. Experiments with a New Boosting Algorithm // Proc of the 13th Conference on Machine Learning. Bari, Italy, 1996: 148-156
[3]  Violas P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Cambridge, USA, 2001, Ⅰ: 511-518
[4]  Elad M, Hel-Or Y, Keshet R. Pattern Detection Using a Maximal Rejection Classifier. Pattern Recognition Letters, 2002, 23(12): 1459-1471
[5]  Xu Xun, Huang T S. Face Recognition with MRC-Boosting // Proc of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005: 1770-1777
[6]  Duchene J, Leclercq S. An Optimal Transformation for Discriminant and Principal Component Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 1988, 10(6): 978-983
[7]  Fisher R A. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 1936, 7: 179-188
[8]  Foley D H, Sammon J W Jr. An Optimal Set of Discriminant Vectors. IEEE Trans on Computers, 1975, 24(3): 281-289
[9]  Osuna E, Freund R, Girosi F. Training Support Vector Machines: An Application to Face Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico, 1997: 130-136
[10]  Waring C A, Liu X W. Face Detection Using Spectral Histograms and SVMs. IEEE Trans on Systems, Man and Cybernetics, 2005, 35(3): 467-476
[11]  Rowley H A. Neural Network-Based Human Face Detection. Ph.D Dissertation. Pittsburgh, USA: Carnegie Mellon University. Computer Science Department, 1999
[12]  Féraud R, Bernier O J, Viallet J E, et al. A Fast and Accurate Face Detector Based on Neural Networks. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(1): 42-53

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133