全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于立体匹配的低纹理图像重构算法

, PP. 786-793

Keywords: 立体匹配,低纹理,三维重构,自适应多边形支撑窗口,相似性,特异性,简单树形动态规划

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对立体匹配中低纹理区域容易产生误匹配及传统动态规划固有的条纹问题,提出一种改进的基于双目立体视觉的低纹理图像三维重构算法。该算法首先基于像素间相似度和像素自身特异性计算匹配代价并引入一种自适应多边形支撑区域聚集匹配度。然后采用一种全局意义的简单树形动态规划进行逐点匹配。最后基于左右一致性准则运用一种简单有效的视差校正方法消除误匹配得到最终视差图。实验证明将算法运用于实拍低纹理灰度图像的匹配,得到轮廓光滑清晰的三维点云,说明该方法的适用性。

References

[1]  Stefano L D, Marchionni M, Mattoccia S. A Fast Area-Based Stereo Matching Algorithm. Image and Vision Computing, 2004, 22(12): 983-1005
[2]  Moallem P, Faez K. Search Space Reduction in the Edge Based Stereo Matching by Context of Disparity Gradient Limit // Proc of the 2nd International Symposium on Image and Signal Processing and Analysis. Pula, Germany, 2001: 164-169
[3]  van Ee R, Schor C M. Unconstrained Stereoscopic Matching of Lines. Vision Research, 2000, 40(2): 151-162
[4]  Kim J C, Lee K M, Choi B T, et al. A Dense Stereo Matching Using Two-Pass Dynamic Programming with Generalized Ground Control Points // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅱ: 1075-1082
[5]  Sun Jian, Zheng Nanning, Shum Y H. Stereo Matching Using Belief Propagation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(7): 787-800
[6]  Boykov Y, Veksler O, Zabih R. Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239
[7]  Belhumeur P N, Mumford D. A Bayesian Treatment of the Stereo Correspondence Problem Using Half-Occluded Regions // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, USA,1992: 506-512
[8]  Yoon K J, Kweon I S. Adaptive Support-Weight Approach for Correspondence Search. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656
[9]  Hirschmüller H. Improvements in Real-Time Correlation Based Stereo Vision // Proc of the IEEE Workshop on Stereo and Multi-Baseline Vision. Hawaii, USA, 2001: 141-148
[10]  Veksler O. Stereo Matching by Compact Windows via Minimum Ratio Cycle // Proc of the 8th IEEE International Conference on Computer Vision. Vancouver, Canada, 2001: 540-547
[11]  Wang L, Kang S B, Shum H Y. Cooperative Segmentation and Stereo Using Perspective Space Search // Proc of the Asia Conference on Computer Vision. Juju Island, Korea, 2004, Ⅰ: 366-371
[12]  Bobick A F, Intille S S. Large Occlusion Stereo. International Journal of Computer Vision, 1999, 33(3): 181-200
[13]  Veksler O. Stereo Correspondence by Dynamic Programming on a Tree // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅱ: 384-390
[14]  Gong Minglun, Yang Y H. Near Real-Time Reliable Stereo Matching Using Programmable Graphics Hardware // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅰ: 924-931
[15]  Hirschmüller H. Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅱ: 807-814
[16]  Zhang Z Y. A Flexible New Technique for Camera Calibration. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(1): 1330-1334
[17]  Fusiello A, Trucco E, Verri A. A Compact Algorithm for Rectification of Stereo Pairs. Machine Vision and Applications, 2000, 12(1): 16-22
[18]  Manduchi R, Tomasi C. Distinctiveness Maps for Image Matching // Proc of the 10th International Conference on Image Analysis and Processing. Washington, USA, 1999: 26-31
[19]  Yoon K J, Kweon I S. Distinctive Similarity Measure for Stereo Matching under Point Ambiguity // Proc of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007: 1-7
[20]  Zhang Ke, Lu Jiangbo, Lafruit G. Scalable Stereo Matching with Locally Adaptive Polygon Approximation // Proc of the International Conference on Image Processing. San Diego, USA, 2008: 313-316
[21]  Lu Jiangbo, Lafruit G, Catthoor F. Anisotropic Local High-Confidence Voting for Accurate Stereo Correspondence. Proc of the SPIE, 2008, 6812: 1-11
[22]  Bleyer M, Gelautz M. Simple but Effective Tree Structures for Dynamic Programming-Based Stereo Matching // Proc of the International Conference on Computer Vision Theory and Applications. Funchal, Portugal, 2008, Ⅱ: 415-422
[23]  Oh J D, Ma S W, Kuo C C J. Stereo Matching via Disparity Estimation and Surface Modeling // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007: 1-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133