全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于近邻熵的主动学习算法

, PP. 97-102

Keywords: 主动学习,最近邻,最大熵,样例选择

Full-Text   Cite this paper   Add to My Lib

Abstract:

在主动学习中,采用近邻熵(NeighborhoodEntropy)作为样例的挑选标准,熵值最大的样例体现基于近邻分类规则,最无法确定该样例的类标。而标注不确定性高的样例可用尽量少的样例获得较高的分类性能。文中提出一种基于近邻熵的主动学习算法。该算法首先计算未标注样例的近邻样例类别熵,然后挑选熵值最大样例的进行标注。实验表明,基于近邻熵挑选样例进行标注,较基于最大距离(MaximalDistance)挑选和随机样例挑选可获得更高的分类性能。

References

[1]  Angluin D. Queries and Concept Learning. Machine Learning, 1988, 2(4): 319-342
[2]  Lewis D D, Catlett J. Heterogeneous Uncertainty Sampling for Supervised Learning // Proc of the 11th International Conference on Machine Learning. New Brunswick, USA, 1994: 148-156
[3]  Freund Y, Seung H S, Shamir E, et al. Selective Sampling Using the Query by Committee Algorithm. Machine Learning, 1997, 28(2/3): 133-168
[4]  Seung H S, Opper M, Sompolinsky H. Query by Committee // Proc of the 5th Annual Workshop on Computational Learning Theory. Pittsburgh, USA, 1992: 287-294
[5]  Schohn G, Cohn D. Less Is More: Active Learning with Support Vector Machines // Proc of the 17th International Conference on Machine Learning. San Francisco, USA, 2000: 839-846
[6]  Roy N. Mccallum A. Toward Optimal Active Learning through Sampling Estimation of Error // Proc of the 18th International Conference on Machine Learning. San Francisco, USA, 2001: 441-448
[7]  Cohn D, Atlas L, Ladner R. Improving Generalization with Active Learning. Machine Learning: Special Issue on Structured Connectionist Systems, 1994, 15(2): 201-221
[8]  Lindenbaum M, Markovitch S, Rusakov D. Selective Sampling for Nearest Neighbor Classifiers. Machine Learning, 2004, 54(2): 125-152
[9]  Valiant L G. A Theory of the Learnable. Communications of the ACM, 1984, 27(11): 1134-1142
[10]  Cover T, Hart P. Nearest Neighbor Pattern Classification. IEEE Trans on Information Theory, 1967, 13(1): 21-27
[11]  Hart P E. The Condensed Nearest Neighbor Rule. IEEE Trans on Information Theory, 1968, 14(3): 515-516
[12]  Hu Qinghua, Yu Daren, Xie Zongxin. Neighborhood Classifiers. Expert Systems with Applications, 2008, 34(2): 866-876
[13]  Wang Hui. Nearest Neighbors by Neighborhood Counting. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(6): 942-953
[14]  Shannon C E. A Mathematical Theory of Communication. Bell System Technical, 1948, 27: 379-433, 623-656
[15]  Hasenjager M, Ritter H. Active Learning with Local Models. Neural Processing Letters, 1998, 7(2): 107-117

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133