Schelkopf B, Smola A, Müller K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 1998, 10(5): 1299-1319
[2]
Schlkopf B, Mika S, Burges C J C, et al. Input Space versus Feature Space in Kernel-Based Methods. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017
[3]
Müller K R, Mika S, Rtsch G, et al. An Introduction to Kernel Based Learning Algorithms. IEEE Trans on Neural Networks, 2001, 12(2): 181-201
[4]
Vapnik V N. The Nature of Statistical Learning Theory. Berlin, Germany: Springer, 1995
[5]
Vapnik V N. Statistical Learning Theory. New York, USA: Wiley, 1998
[6]
Smola A J, Schlkopf B. A Tutorial on Support Vector Regression. Statistics and Computing, 2004, 14(3): 199-222
[7]
Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167
[8]
Kerm P V. Adaptive Kernel Density Estimation. The Stata Journal, 2003, 3: 148-156
[9]
Schlkopf B, Mika S, Smola A, et al. Kernel PCA Pattern Reconstruction via Approximate on Pre-Images // Proc of the International Conference on Artificial Neural Networks. Skvde, Sweden, 1998: 147-152
[10]
Pavlidis P, Weston J, Cai J, et al. Gene Functional Classification from Heterogeneous Data // Proc of the 5th Annual International Conference on Computational Molecular Biology. Montreal, Canada, 2001: 242-248
[11]
Rakotomamonjy A, Bach F R, Canu S, et al. More Efficiency in Multiple Kernel Learning // Proc of the 24th International Conference on Machine Learning. Corvalis, USA, 2007: 775-782
[12]
Ong C S, Smola A J, Williamson R C. Learning the Kernel with Hyperkernels. Journal of Machine Learning Research, 2005, 6: 1043-1071
[13]
Zheng Dannian, Wang Jiaxin, Zhao Yannan. Non-Flat Function Estimation with a Multi-Scale Support Vector Regression. Neurocomputing, 2006, 70(1/2/3): 420-429
[14]
Bach F R, Lanckriet G R G, Jordan M I. Multiple Kernel Learning, Conic Duality, and the SMO Algorithm [EB/OL]. [2004-07-04]. http://www.di.ens.fr/~fbach/skm_icml.pdf
[15]
Sonnenburg S, Rtsch G, Schfer C. A General and Efficient Multiple Kernel Learning Algorithm // Proc of the 19th Annual Conference on Neural Information Processing Systems. Vancouver, Canada, 2005: 1273-1280
[16]
Bach F R. Consistency of the Group Lasso and Multiple Kernel Learning. Journal of Machine Learning Research, 2008, 9: 1179-1225
[17]
Kloft M, Brefeld U, Laskov P, et al. Non-Sparse Multiple Kernel Learning [EB/OL]. [2008-12-15]. eprints.pascal-network.org/archive/00004977/01/ws_mkl.pdf
[18]
Zien A, Ong C S. Multiclass Multiple Kernel Learning // Proc of the 24th International Conference on Machine Learning. New York, USA, 2007: 1191-1198
[19]
Gnen M, Alpaydin E. Localized Multiple Kernel Learning// Proc of the 25th International Conference on Machine Learning. Helsinki, Finland, 2008: 352-359
[20]
Rakotomamonjy A, Bach F R, Canu S, et al. SimpleMKL. Journal of Machine Learning Research, 2008, 9: 2491-2521
[21]
Damoulas T, Girolami M A. Pattern Recognition with a Bayesian Kernel Combination Machine. Pattern Recognition Letters, 2009, 30(1): 46-54
[22]
Kingsbury N, Tay D B H, Palaniswami M. Multi-Scale Kernel Methods for Classification // Proc of the IEEE Workshop on Machine Learning for Signal Processing. Mystic, USA, 2005: 43-48
[23]
Zheng Danian, Wang Jiaxin, Zhao Yannan. Time Series Predictions Using Multi-Scale Support Vector Regressions // Proc of the 3rd International Conference on Theory and Applications of Models of Computation. Beijing, China, 2006: 474-481
[24]
Yang Zhen, Guo Jun, Xu Weiran, et al. Multi-Scale Support Vector Machine for Regression Estimation // Proc of the 3rd International Symposium on Neural Networks. Chengdu, China, 2006: 1030-1037
[25]
Pozdnoukhov A, Kanevski M. Multi-Scale Support Vector Algorithms for Hot Spot Detection and Modeling. Journal of Stochastic Environmental Research and Risk Assessment, 2007, 22(5): 647-660
[26]
Li Bin, Zheng Danian, Sun Lifeng, et al. Exploiting Multi-Scale Support Vector Regression for Image Compression. Neurocomputing, 2007, 70(16/17/18): 3068-3074
[27]
Opfer R. Multiscale Kernels. Advances in Computational Mathematics, 2006, 25(4): 357-380
[28]
Zhou Yatong, Zhang Taiyi, Li Xiaohe. Multi-Scale Gaussian Processes Model. Journal of Electronics (China), 2006, 23(4): 618-622
[29]
Walder C, Kim K I, Schlkopf B. Sparse Multiscale Gaussian Process Regression // Proc of the 25th International Conference on Machine Learning. Helsinki, Finland, 2008: 1112-1119
[30]
Zheng Danian. Research on Kernel Methods in Machine Learning. Ph.D Dissertation. Beijing, China: Tsinghua University. Department of Computer Science and Technology, 2006 (in Chinese) (郑大念.机器学习中的核方法研究.博士学位论文.北京:清华大学.计算机科学与技术系, 2006)
[31]
Lin Y Y, Liu T L, Fuh C S. Local Ensemble Kernel Learning for Object Category Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007: 1-8
[32]
Qiu Shibin, Lane T. Multiple Kernel Support Vector Regression for siRNA Efficacy Prediction // Proc of the International Workshop on Sequences, Subsequences and Consequences. Los Angeles, USA, 2008: 367-378
[33]
Cristianini N, Shawe-Taylor J, Elisseeff A, et al. On Kernel-Target Alignment // Dietterich T G, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2002, XIV: 367-373
[34]
Cristianini N, Elisseeff A, Shawe-Taylor J. On Optimizing Kernel Alignment [EB/OL]. [2001-04-28]. http://www.iipl.fudan.edu.cn/~zhangjp/literatures/cluster %20 analysis/01087.ps