全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

半监督谱聚类特征向量选择算法

, PP. 48-56

Keywords: 谱聚类,特征向量选择,半监督学习,免疫克隆选择

Full-Text   Cite this paper   Add to My Lib

Abstract:

对于一个K类问题,Ng-Jordan-Weiss(NJW)谱聚类算法通常采用数据规范化亲和度矩阵的前K个最大特征值对应的特征向量作为数据的一种表示。然而,对于某些模式识别问题,这K个特征向量不一定能够体现原始数据的结构。文中提出一种半监督谱聚类特征向量选择算法。该算法利用一定量的监督信息寻找能够体现数据结构的特征向量组合,进而获得优于传统谱聚类算法的聚类性能。UCI标准数据集和MNIST手写体数据集上的仿真实验验证该算法的有效性和鲁棒性。

References

[1]  Fiedler M. Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal, 1973, 23(98): 298-305
[2]  Hendrickson B, Leland R. An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations. SIAM Journal on Scientific Computing, 1995, 16(2): 452-469
[3]  Hagen L, Kahng A B. New Spectral Methods for Ratio Cut Partitioning and Clustering. IEEE Trans on Computer-Aided Design, 1992, 11(9): 1074-1085
[4]  Dhillon I S. Co-Clustering Documents and Words Using Bipartite Spectral Graph Partitioning // Proc of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). San Francisco, USA, 2001: 269-274
[5]  Xu Sen, Lu Zhimao, Gu Guochang. Document Cluster Ensemble Algorithms Based on Matrix Spectral Analysis. Pattern Recognition and Artificial Intelligence, 2009, 22(5): 780-786 (in Chinese) (徐 森,卢志茂,顾国昌.基于矩阵谱分析的文本聚类集成算法.模式识别与人工智能, 2009, 22(5): 780-786)
[6]  Ding C, He Xiaofeng, Zha Hongyuan, et al. Unsupervised Learning: Self-Aggregation in Scaled Principal Component Space // Proc of the 6th European Conference on Principles of Data Mining and Knowledge Discovery. Helsinki, Finland, 2002: 112-124
[7]  Shi Jiaobo, Malik J. Normalized Cuts and Image Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905
[8]  Ng A Y, Jordan M I, Weiss Y. On Spectral Clustering: Analysis and an Algorithm // Dietterich T, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2002, XIV: 849-856
[9]  Fowlkes C, Belongie S, Chung F, et al. Spectral Grouping Using the Nystrm Method. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225
[10]  Wang Ling, Bo Liefeng, Jiao Licheng. Density-Sensitive Semi-Supervised Spectral Clustering. Journal of Software, 2007, 18(10): 2412-2422 (in Chinese) (王 玲,薄列峰,焦李成.密度敏感的半监督谱聚类.软件学报, 2007, 18(10): 2412-2422)
[11]  Sun Z, Bebis G, Miller R. Object Detection Using Feature Subset Selection. Pattern Recognition, 2004, 37(11): 2165-2176
[12]  Li Guozheng, Bu Hualong, Yang M Q, et al. Selecting Subsets of Newly Extracted Features from PCA and PLS in Microarray Data Analysis. BMC Genomics, 2008, 9(Z2): 24
[13]  Xiang Tuo, Gong Shaogang. Spectral Clustering with Eigenvector Selection. Pattern Recognition, 2008, 41(3): 1012-1029
[14]  Jiao Licheng, Du Haifeng, Liu Fang, et al. Immunological Computation for Optimization, Learning and Recognition. Beijing, China: Science Press, 2006 (in Chinese) (焦李成,杜海峰,刘 芳,等.免疫优化计算学习与识别.北京:科学出版社, 2006)
[15]  Zelnik-Manor L, Perona P. Self-Tuning Spectral Clustering // Saul L K, Weiss Y, Bottou L, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2004, XVII: 1601-1608
[16]  Zhang Bin, Hsu M, Dayal U. K-Harmonic Means-A Spatial Clustering Algorithm with Boosting // Proc of the 1st International Workshop on Temporal, Spatial and Spatio-Temporal Data Mining. Lyon, France, 2000: 31-45
[17]  Asuncion A, Newman D J. UCI Machine Learning Repository [DB/OL]. [2009-11-01]. http://www.ics.uci.edu/~mlearn/MLRepository.html
[18]  Lecun Y Bottou L, Bengio Y, et al. Gradient-Based Learning Applied to Document Recognition. Proc of the IEEE, 1998, 86(11): 2278-2324
[19]  Wu Mingru, Schlkopf B. A Local Learning Approach for Clustering // Proc of the 20th Annual Conference on Neural Information Processing Systems. Vancouver, Canada, 2007: 1529-1536
[20]  Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167
[21]  Geng Xin, Zhan Dechuan, Zhou Zhihua. Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Trans on Systems, Man and Cybernetics, 2005, 35(6): 1098-1107

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133