Fiedler M. Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal, 1973, 23(98): 298-305
[2]
Hendrickson B, Leland R. An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations. SIAM Journal on Scientific Computing, 1995, 16(2): 452-469
[3]
Hagen L, Kahng A B. New Spectral Methods for Ratio Cut Partitioning and Clustering. IEEE Trans on Computer-Aided Design, 1992, 11(9): 1074-1085
[4]
Dhillon I S. Co-Clustering Documents and Words Using Bipartite Spectral Graph Partitioning // Proc of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). San Francisco, USA, 2001: 269-274
[5]
Xu Sen, Lu Zhimao, Gu Guochang. Document Cluster Ensemble Algorithms Based on Matrix Spectral Analysis. Pattern Recognition and Artificial Intelligence, 2009, 22(5): 780-786 (in Chinese) (徐 森,卢志茂,顾国昌.基于矩阵谱分析的文本聚类集成算法.模式识别与人工智能, 2009, 22(5): 780-786)
[6]
Ding C, He Xiaofeng, Zha Hongyuan, et al. Unsupervised Learning: Self-Aggregation in Scaled Principal Component Space // Proc of the 6th European Conference on Principles of Data Mining and Knowledge Discovery. Helsinki, Finland, 2002: 112-124
[7]
Shi Jiaobo, Malik J. Normalized Cuts and Image Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905
[8]
Ng A Y, Jordan M I, Weiss Y. On Spectral Clustering: Analysis and an Algorithm // Dietterich T, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2002, XIV: 849-856
[9]
Fowlkes C, Belongie S, Chung F, et al. Spectral Grouping Using the Nystrm Method. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225
[10]
Wang Ling, Bo Liefeng, Jiao Licheng. Density-Sensitive Semi-Supervised Spectral Clustering. Journal of Software, 2007, 18(10): 2412-2422 (in Chinese) (王 玲,薄列峰,焦李成.密度敏感的半监督谱聚类.软件学报, 2007, 18(10): 2412-2422)
[11]
Sun Z, Bebis G, Miller R. Object Detection Using Feature Subset Selection. Pattern Recognition, 2004, 37(11): 2165-2176
[12]
Li Guozheng, Bu Hualong, Yang M Q, et al. Selecting Subsets of Newly Extracted Features from PCA and PLS in Microarray Data Analysis. BMC Genomics, 2008, 9(Z2): 24
[13]
Xiang Tuo, Gong Shaogang. Spectral Clustering with Eigenvector Selection. Pattern Recognition, 2008, 41(3): 1012-1029
[14]
Jiao Licheng, Du Haifeng, Liu Fang, et al. Immunological Computation for Optimization, Learning and Recognition. Beijing, China: Science Press, 2006 (in Chinese) (焦李成,杜海峰,刘 芳,等.免疫优化计算学习与识别.北京:科学出版社, 2006)
[15]
Zelnik-Manor L, Perona P. Self-Tuning Spectral Clustering // Saul L K, Weiss Y, Bottou L, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2004, XVII: 1601-1608
[16]
Zhang Bin, Hsu M, Dayal U. K-Harmonic Means-A Spatial Clustering Algorithm with Boosting // Proc of the 1st International Workshop on Temporal, Spatial and Spatio-Temporal Data Mining. Lyon, France, 2000: 31-45
[17]
Asuncion A, Newman D J. UCI Machine Learning Repository [DB/OL]. [2009-11-01]. http://www.ics.uci.edu/~mlearn/MLRepository.html
[18]
Lecun Y Bottou L, Bengio Y, et al. Gradient-Based Learning Applied to Document Recognition. Proc of the IEEE, 1998, 86(11): 2278-2324
[19]
Wu Mingru, Schlkopf B. A Local Learning Approach for Clustering // Proc of the 20th Annual Conference on Neural Information Processing Systems. Vancouver, Canada, 2007: 1529-1536
[20]
Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167
[21]
Geng Xin, Zhan Dechuan, Zhou Zhihua. Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Trans on Systems, Man and Cybernetics, 2005, 35(6): 1098-1107