Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer, 1995
[2]
Vapnik V N. Statistical Learning Theory. New York, USA: Wiley, 1998
[3]
Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167
[4]
Christianini V, Shawe-Taylor J. An Introduction to Support Vector Machines. Cambridge, UK: Cambridge University Press, 2002
[5]
Jayadeva, Khemchandani R, Chandra S. Twin Support Vector Machines for Pattern Classification. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910
[6]
Peng Xinjun. TSVR: An Efficient Twin Support Vector Machine for Regression. Neural Networks, 2010, 23(3): 365-372
[7]
Chapelle O. Training a Support Vector Machine in the Primal [EB/OL]. [2006-08-30]. http://www.kyb.mpg.de/publications/primal_[o].pdf
[8]
Eubank R L. Statistics: Textbooks and Monographs: Nonparametric Regression and Spline Smoothing. 2nd Edition. New York, USA: Marcel Dekker, 1999
[9]
Blake C I, Merz C J. UCI Repository for Machine Learning Databases [DB/OL]. [2009-10-25]. http://www.ics.uci.edu/ ~mlearn/ML-Repository.html
[10]
Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers. Neural Processing Letters, 1999, 9(3): 293-300
[11]
Suykens J A K, Lukas L, van Dooren P, et al. Least Squares Support Vector Machine Classifiers: A Large Scale Algorithm // Proc of European Conference on Circuit Theory and Design. Stresa, Italy, 1999: 839-842
[12]
The MathWorks [DB/OL]. [2009-10-25]. http://www.mathworks.com