全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于蚁群优化的多个属性约简的求解方法

, PP. 176-184

Keywords: 属性约简,蚁群优化,粗糙集

Full-Text   Cite this paper   Add to My Lib

Abstract:

属性约简是粗糙集理论研究的一个核心问题,很多情况下多个最小属性约简被期望能帮助用户做出更好的决策。文中提出一种基于蚁群优化的获取多个属性约简的方法。首先,结合蚁群优化方法将属性约简问题转化为受限制满足问题,并提出新的模型R-Graph,进而最小属性约简问题转化为在R-Graph中寻找最低成本路径问题。然后,定义吸收算子删除可辨识矩阵中冗余数据的方法以达到简化搜索空间的目的,并提出一个求解多个属性约简的算法(R-ACO)。最后,对比实验说明该方法在大多数情况下能得到更多的最小属性约简结果,并且算法效率较高。

References

[1]  Pawlak Z. Rough Sets. International Journal of Computer and Information Sciences, 1982, 11: 341-356
[2]  Wong S K M, Ziarko W. On Optimal Decision Rules in Decision Tables. Bulletin of Polish Academy of Sciences, 1985, 33: 693-696
[3]  Wang Guoyin, Wu Yu, Fisher P S. Rule Generation Based on Rough Set Theory // Proc of the SPIE Conference on Data Mining and Knowledge Discovery: Theory, Tools, and Technology. Orlando, USA, 2000, II: 181-189
[4]  Wang Guoyin, Yu Hong, Yang Dachun. Decision Table Reduction Based on Conditional Information Entropy. Chinese Journal of Computers, 2002, 25(7): 759-766 (in Chinese) (王国胤,于 洪,杨大春.基于条件信息熵的决策表约简.计算机学报, 2002, 25(7): 759-766)
[5]  Wang Jue, Wang Ju. Reduction Algorithms Based on Discernibility Matrix: The Ordered Attributes Method. Journal of Computer Science and Technology, 2001, 16(6): 489- 504
[6]  Wu Weizhi, Zhang Mei, Li Huanzu, et al. Knowledge Reduction in Random Information Systems via Dempster-Shafer Theory of Evidence. Information Sciences: An International Journal, 2005, 174(3/4): 143-164
[7]  Yao Yiyu, Zhao Yan. Discernibility Matrix Simplification for Constructing Attribute Reducts. Information Science: An International Journal, 2009, 179(7): 867-882
[8]  Deng Tingquan, Yang Chengdong, Zhang Y T, et al. An Improved Ant Colony Optimization Applied to Attributes Reduction // Cao Bingyuan, Zhang Chengyi, Li Taifu, eds. Fuzzy Information and Engineering, Berlin, Germany: Springer, 2009: 1-6
[9]  Jensen R, Shen Q. Finding Rough Set Reducts with Ant Colony Optimization // Proc of the UK Workshop on Computational Intelligence. Bristol, UK, 2003: 15-22
[10]  Jiang Yuanchun, Liu Yezheng. An Attribute Reduction Method Based on Ant Colony Optimization // Proc of the 6th World Congress on Intelligent Control and Automation. Dalian, China, 2006: 3542-3546
[11]  Ke Liangjun, Feng Zuren, Ren Zhigang. An Efficient Ant Colony Optimization Approach to Attribute Reduction in Rough Set Theory. Pattern Recognition Letters, 2008, 29(9): 1351-1357
[12]  Zeng Huanglin, Huang Yan, Zeng Xiaohui. A New Approach of Attribute Reduction Based on Ant Colony Optimization // Proc of the 5th International Conference on Natural Computation. Tianjuan, China, 2009, Ⅲ: 3-7
[13]  Wang Xiangyang, Yang Jie, Teng Xiaolong, et al. Feature Selection Based on Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters, 2007, 28(4): 459-471
[14]  Dorigo M, Sttzle T. Ant Colony Optimization. Cambridge, USA: MIT Press, 2004
[15]  Solnon C. Ants Can Solve Constraint Satisfaction Problems. IEEE Trans on Evolutionary Computation, 2002, 6(4): 347-357
[16]  Skowron A, Rauszer C. The Discernibility Matrices and Functions in Information Systems. Fundamenta Informaticae, 1991, 15(2): 331-362
[17]  Tsang E PK. Foundations of Constraint Satisfaction. London, UK: Academic Press, 1993
[18]  Liang Lin, Xu Guanghua. Reduction of Rough Set Attribute Based on Immune Clone Selection. Journal of Xian Jiaotong University, 2005, 39(11): 1231-1235 (in Chinese) (梁 霖,徐光华.基于克隆选择的粗糙集属性约简方法.西安交通大学学报, 2005, 39(11): 1231-1235)
[19]  UC Irvine Machine Learning Repository [DB/OL]. [2008-01]. http://archive.ics.uci.edu/ml/

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133