全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于优良模式连接的分布估计算法求解TSP问题

, PP. 185-193

Keywords: 分布估计算法,优良模式连接,模式矩阵,TSP问题

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于优良模式连接的分布估计算法求解TSP问题。首先构造两两相邻的模式矩阵,然后结合优良个体信息建立多个相邻模式的连接块。以块为整体调整排列顺序,避免重复搜索,改善优良模式构造块的破坏问题,提高搜索速度。同时对每个块内部的模式有条件地进行局部调整,进一步加强算法的局部搜索能力。仿真结果表明,本文算法在求解TSP问题时表现出较好的性能。

References

[1]  Pelikan M, Goldberg D E, Lobo F G. A Survey of Optimization by Building and Using Probabilistic Models. Computational Optimization and Applications, 2002, 21(1): 5-20
[2]  Harik G R, Lobo F G, Goldberg D E. The Compact Genetic Algorithm. IEEE Trans on Evolutionary Computation, 1999, 3(4): 287-297
[3]  Baluja S. Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning. Technical Report, CMU-CS-94-163, Pittsburgh, USA: Carnegie Mellon University. Department of Computer Science, 1994
[4]  de Bonnet J S, Isbell C L, Viola P. MIMIC: Finding Optima by Estimating Probability Densities // Jordan M I, Kearns M J, Solla S A, eds. Advances in Neural Information Processing Systems, Cambridge, USA, MIT Press, 1997, IX: 424-430
[5]  Zhou Shude, Sun Zengqi. A Survey on Estimation of Distribution Agorithm. Acta Automatica Sinica, 2007, 33(2): 113-124 (in Chinese) (周树德,孙增圻.分布估计算法综述,自动化学报, 2007, 33(2): 113-124)
[6]  Paul T K, Iba H. Linear and Combinatorial Optimizations by Estimation of Distribution Algorithms // Proc of the 9th MPS Symposium on Evolutionary Computation. Nagoya Japan, 2002: 1-8
[7]  Leung K S, Jin Huidong, Xu Zongben. A Expanding Self-Organizing Neural Network for the Travel Salesman Problem. Neuron Computing, 2004, 62: 267-292
[8]  DePuy G W, Whitehouse G E. Meta-RaPS: A Simple and Effective Approach for Solving the Traveling Salesman Problem. Transportation Research Part E: Logistics and Transportation Review, 2005, 41(2): 115-130
[9]  Tsai C F, Tsai C W, Tseng C. A New Hybrid Heuristic Approach for Solving Large Traveling Salesman Problem. Information Sciences, 2004, 166(1): 67-81
[10]  Mühlenbein H, Paass G. From Recombination of Genes to the Estimation of Distributions I. Binary Parameters // Proc of the 4th International Conference on Parallel Problem Solving from Nature. Berlin, Germany, 1996: 178-187
[11]  Tsutsui S. Probabilistic Model-Building Genetic Algorithms in Permutation Representation Domain Using Edge Histogram // Proc of the 7th Parallel Problem Solving from Nature. Granada, Spain, 2002: 224-233
[12]  Larranaga P, Lozano J A. Estimation of Distribution Algorithms. Dordrecht, Netherlands: Kluwer Academic Publishers, 2002
[13]  Ventresca M, Tizhoosh H R. A Diversity Maintaining Population-Based Incremental Learning Algorithm. Information Sciences, 2008, 178(21): 4038-4056
[14]  Oliver I M, Smith D J, Holland J R C. A Study of Permutation Crossover Operators on the Travel Salesman Problem // Proc of the 2nd International Conference on Genetic Algorithms. Cambridge, USA, 1987: 224-230
[15]  Starkweather T, McDaniel S, Mathias K, Whitley D, Whitley C. A Comparison of Genetic Sequence Operators // Proc of the 4th International Conference on Genetic Algorithms. San Diego, USA, 1991: 69-76
[16]  Tsutsui S, Pelikan M, Ghosh A. Effect of Local Search on Edge Histogram Based Sampling Algorithms for Permutation Problems. // Proc of the 6th Meta-Heuristics International Conference. Vienna, Austria, 2005: 865-872
[17]  Lin S, Kernighan B W. An Effective Heuristic Algorithm for the Traveling-Salesman Problem. Operations Research, 1973, 21: 498-516
[18]  Helsgaun K. An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic. European Journal of Operational Research, 2000, 126(1):106-130

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133