全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种融入可信度的集成SVM垃圾书签检测方法

, PP. 591-600

Keywords: 垃圾书签,垃圾检测,支持向量机,可信度,集成学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现有垃圾书签检测方法在用户概貌信息较少情况下检测性能下降的问题,提出一种融入可信度的集成SVM垃圾书签检测方法。首先基于Bootstrap技术对训练样本进行可重复采样,得到个体SVM的训练子集,然后将SVM的标准输出直接拟合Sigmoid函数得到SVM的后验概率输出,作为类别输出的可信度,并提出一种性能优于投票策略的融入可信度的融合方法对个体SVM的输出结果进行融合。实验结果表明,该方法在用户概貌信息较少的情况下具有较好的检测性能。

References

[1]  Lin H J,Yeh J P.Optimal Reduction of Solutions for Support Vector Machines.Applied Mathematics and Computation,2009,214(2): 329-335
[2]  Rokach L.Ensemble-Based Classifiers.Artificial Intelligence Review,2010,33(1/2): 1-39
[3]  Hanczar B,Nadif M.Using the Bagging Approach for Biclustering of Gene Expression Data.Neurocomputing,2001,74(10): 1595-1605
[4]  Koutrika G,Effendi F A,Gyngyi Z,et al.Combating Spam in Tagging Systems // Proc of the 3rd International Workshop on Adversarial Information Retrieval on the Web.Banff,Canada,2007: 57-64
[5]  Heymann P,Koutrika G,Garcia-Molina H.Fighting Spam on Social Web Sites-A Survey of Approaches and Future Challenges.IEEE Internet Computing,2007,11(6): 36-45
[6]  Krause B,Schmitz C,Hotho A,et al.The Anti-Social Tagger-Detecting Spam in Social Bookmarking Systems // Proc of the 4th International Workshop on Adversarial Information Retrieval on the Web.Beijing,China,2008: 61-68
[7]  Kyriakopoulou A,Kalamboukis T.Combining Clustering with Classification for Spam Detection in Social Bookmarking Systems // Proc of the International Workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases.Antwerp,Belgium,2008: 47-54
[8]  Markines B,Cattuto C,Menczer F.Social Spam Detection // Proc of the 5th International Workshop on Adversarial Information Retrieval on the Web.Madrid,Spain,2009: 41-48
[9]  Gkanogiannis A,Kalamboukis T.A Novel Supervised Learning Algorithm and Its Use for Spam Detection // Proc of the International Workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases.Antwerp,Belgium,2008: 13-20
[10]  Acevedo F J,Maldonado S,Domínguez E,et al.Probabilistic Support Vector Machines for Multi-Class Alcohol Identification.Sensors and Actuators B: Chemical,2007,122(1): 227-235
[11]  Lin H T,Lin C J,Weng R C.A Note on Platts Probabilistic Outputs for Support Vector Machines.Machine Learning,2007,68(3): 267-276
[12]  Zeng Xiaodong,Chao S,Wong F.Optimization of Bagging Classifiers Based on SBCB Algorithm // Proc of the 9th International Conference on Machine Learning and Cybernetics.Qingdao,China,2010: 262-267
[13]  Han Guang,Zhao Chunxia.AUC Maximization Linear Classifier Based on Active Learning and Its Application.Neurocomputing,2010,73(7/8/9): 1272-1280

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133