全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于时空分析的视频前景提取

, PP. 582-590

Keywords: 前景提取,Gabor滤波,均值漂移,颜色模型,双重标记

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了从包含动态背景或者非平移运动前景的视频中提取完整的前景区域,提出一种视频分割算法。首先,将视频中单个像素的变化过程视为离散时间信号,运用时间轴的Gabor滤波对时域信息进行分析,将视频粗分为前景和背景;然后,运用均值漂移算法对前景和背景做颜色聚类分析,分析空域的颜色关联信息,分别建立全局颜色模型和局部颜色模型;最后,运用双重标记法提取视频前景。该算法综合考虑视频的时域信息和空域信息。在多个视频库的测试结果表明,该算法可以显著提高前景区域提取的精度,特别是对于背景动态变化或者前景发生非平移运动的视频。

References

[1]  Beigi H S M,Maes S H,Maes S H.A Hierarchical Approach to Large-Scale Speaker Recognition // Proc of the 6th European Conference on Speech Communication and Technology.Budapest,Hungary,1999,5: 2203-2206
[2]  Chen Cheng,Zhuang Yueting,Xiao Jun.Video Foreground Segmentation with Camera Movement.Journal of Zhejiang University (Engineering Science),2009,43(6): 973-977 (in Chinese)(陈 成,庄越挺,肖 俊.相机运动条件下的视频前景提取.浙江大学学报(工学版),2009,43(6): 973-977)
[3]  Fukunaga K,Hostetler L.The Estimation of the Gradient of a Density Function with Applications in Pattern Recognition.IEEE Trans on Information Theory,1975,21(1): 32-40
[4]  Cheng Yizong.Mean Shift,Mode Seeking,and Clustering.IEEE Trans on Pattern Analysis and Machine Intelligence,1995,17(8): 790-799
[5]  Comaniciu D,Meer P.Mean Shift: A Robust Approach toward Feature Space Analysis.IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(5): 603-619
[6]  Gorelick L,Blank M,Shechtman E,et al.Actions as Space-Time Shapes.IEEE Trans on Pattern Analysis and Machine Intelligence,2005,29(12): 2247-2253
[7]  Dollar P,Rabaud V,Cottrell G,et al.Behavior Recognition via Sparse Spatio-Temporal Features // Proc of the 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Survillance.Beijing,China,2005: 65-72
[8]  Laptev I,Lindeberg T.Space-Time Interest Points // Proc of the 9th IEEE International Conference on Computer Vision.Nice,France,2003,Ⅰ: 432-439
[9]  Stauffer C,Grimson W E L.Adaptive Background Mixture Models for Real-Time Tracking // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Fort Collins,USA,1999,2: 246-252
[10]  Kaewtrakulpong P,Bowden R.An Improved Adaptive Background Mixture Model for Real-Time Tracking with Shadow Detection // Proc of the 2nd European Workshop on Advanced Video-Based Surveillance Systems.Kingston,UK,2001: 149-158
[11]  Elgammal A,Duraiswami R,Harwood D,et al.Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance // Proc of the IEEE,2002,90(7): 1151-1163
[12]  Migdal J,Grimson E L W.Background Subtraction Using Markov Thresholds // Proc of the IEEE Workshop on Motion and Video Computing.Washington D C,USA,2005: 58-65
[13]  Sheikh Y,Shah M.Bayesian Modeling of Dynamic Scenes for Object Detection.IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(11): 1778-1792

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133