Newman M E J.Scientific Collaboration Networks I: Network Construction and Fundamental Results [EB/OL].[2010-06-16].http://pre.aps.org/abstract/PRE/v64/il/eo16131
[2]
Cortes C,Pregibon D,Volinsky T C.Communities of Interest.Intelligent Data Analysis,2002,6(3): 211-219
[3]
Sen P,Namata G M,Bilgic M,et al.Collective Classification in Network Data.AI Magazine,2008,29(3): 93-106
[4]
Zhang N L,Poole D.A Simple Approach to Bayesian Network Computations // Proc of the 10th Canadian Conference on Artificial Intelligence.Vancouver,Canada,1994: 171-178
[5]
Huang C.Inference in Belief Networks: A Procedural Guide.International Journal of Approximate Reasoning,1996,15(3): 225-263
[6]
Dechter R.Bucket Elimination: A Unifying Framework for Probabilistic Inference // Proc of the 12th Annual Conference on Uncertainty in Artificial Intelligence.Portland,USA,1996: 211-219
[7]
Brush S G.History of the Lenz-Ising Model.Reviews of Modern Physics,1967,39(4): 883-893
[8]
Zucker S W,Hummel R A,Rosenfeld A.An Application of Relaxation Labeling to Line and Curve Enhancement.IEEE Trans on Computers,1997,26(4): 394-403
[9]
Li Z S,Han Wang,Petrou M.Relaxation Labeling of Markov Random Fields // Proc of the 12th International Conference on Pattern Recognition.Jerusalem,Israel,1994,I: 488-492
[10]
Chakrabarti S,Dom B,Indyk P.Enhanced Hypertext Categorization Using Hyperlinks // Proc of the ACM SIGMOD International Conference on Management of Data.Seattle,USA,1998: 307-318
[11]
Carvalho R V,Cohen W W.On the Collective Classification of Email Speech Acts // Proc of the 28th ACM SIGIR Annual International Conference on Research and Development in Information Retrieval.Salvador,Brazil,2005: 345-352
[12]
Taskar B,Pieter A,Koller D.Discriminative Probabilistic Models for Relational Data // Proc of the 18th Annual Conference on Uncertainty in Artificial Intelligence.Edmonton,Canada,2002: 485-492
[13]
Lafferty J D,McCallum A,Pereira F C N.Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data // Proc of the 18th International Conference on Machine Learning.Williamstown,USA,2001: 282-289
[14]
Chen Lei,Wainwright M,Cetin M,et al.Multitarget-Multisensor Data Association Using the Tree-Reweighted Max-Product Algorithm // Proc of the SPIE,2003,5096: 127-138
[15]
Lu Qing,Getoor L.Link-Based Classification // Proc of the 20th International Conference on Machine Learning.Washington,USA,2003: 496-503
[16]
Jensen D,Neville J,Gallagher B.Why Collective Inference Improves Relational Classification // Proc of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Seattle,USA,2004: 593- 598
[17]
Neville J,Jensen D.Iterative Classification in Relational Data // Proc of the 15th AAAI Workshop on Statistical Relational Learning.Austin,USA,2000: 42-49
[18]
Stoer M,Wagner F.A Simple Min-Cut Algorithm.Journal of the ACM,1997,44(4): 585-591
[19]
Blau M P.Inequality and Heterogeneity: A Primitive Theory of Social Structure.New York,USA: Free Press,1977
Kernighan W B,Lin S.An Efficient Heuristic Procedure for Partitioning Graphs.The Bell System Technical Journal,1970,49(1): 291-307
[22]
Shi Jianbo,Malik J.Normalized Cuts and Image Segmentation.IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(8): 888-905
[23]
Pearl J.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.Orlando,USA: Morgan Kaufmann,1988
[24]
Macskassy S A.Improving Learning in Networked Data by Combining Explicit and Mined Links // Proc of the 22nd AAAI Conference on Artificial Intelligence.Vancouver,Canada,2007: 590-595
[25]
Gallagher B,Tong Hanghang,Eliassi-Rad T,et al.Using Ghost Edges for Classification in Sparsely Labeled Networks // Proc of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Las Vegas,USA,2008: 256-264
[26]
Chapelle O,Scholkopf B,Zien A.Semi-Supervised Learning.Cambridge,USA: MIT Press,2006
[27]
Zhu Xiaojin,Ghahramani Z,Lafferty J.Semi- Supervised Learning using Gaussian Fields and Harmonic Functions // Proc of the 20th International Conference on Machine Learning.Washington,USA,2003: 912-919
[28]
Zhou Dengyong,Bousquet O,Lal T N,et al.Learning with Local and Global Consistency // Proc of the 17th Annual Conference on Neural Information Processing Systems.Vancouver,Canada,2004: 321-328
[29]
Long Jun,Yin Jianping,Zhu En,et al.A Survey of Active Learning.Journal of Computer Research and Development,2008,45(Z1): 300-304 (in Chinese)(龙 军,殷建平,祝 恩,等.主动学习研究综述.计算机研究与发展,2008,45(Z1): 300 -304)
[30]
McCallum A K,Nigam K,Rennie J,et al.Automating the Construction of Internet Portals with Machine Learning.Information Retrieval,2000,3(2): 127-163
[31]
Craven M,Dipasquo D,Freitag D,et al.Learning to Extract Symbolic Knowledge from the World Wide Web // Proc of the 15th National Conference on Artificial Intelligence.Madison,USA,1998: 509-516
[32]
Bilgic M,Namata G M,Getoor L.Combining Collective Classification and Link Prediction // Proc of the 7th IEEE International Conference on Data Mining.Omaha,USA,2007: 381-386
[33]
Zhang Qianming,Shang Mingsheng,Lu Linyuan.Similarity-Based Classification in Partially Labeled Networks.International Journal of Modern Physics C,2010,21(6): 813-824
[34]
Bilgic M,Getoor L.Reflect and Correct: A Misclassification Prediction Approach to Active Inference.ACM Trans on Knowledge Discovery from Data.2009,3(4):1-32
[35]
Hou Cuiqin,Jiao Licheng.Graph Based Co-Training Algorithm for Web Page Classification.Chinese Journal of Electronics,2009,37(10): 2173-2180 (in Chinese)(侯翠琴,焦李成.基于图的Co-training网页分类.电子学报,2009,37(10): 2173-2180)
[36]
Zhou Zhihua,Zhang Minling.Multi-Instance Multi-Label Learning with Application to Scene Classification // Proc of the 20th Annual Conference on Neural Information Processing Systems.Vancouver,Canada,2006: 1609-1616
[37]
Zhang Minling,Zhou Zhihua.M3MIML: A Maximum Margin Method for Multi-Instance Multi-Label Learning // Proc of the 8th IEEE International Conference on Data Mining.Pisa,Italy,2008: 688-697
[38]
Zhou Zhihua,Jiang Kai,Li Ming.Multi-Instance Learning Based Web Mining.Applied Intelligence,2005,22(2): 135-147
[39]
Jin Rong,Wang Shijun,Zhou Zhihua.Learning a Distance Metric from Multi-Instance Multi-Label Data // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Miami,USA,2009: 896-902
[40]
Li Yingxin,Ji Shuiwang,Kumar S,et al.Drosophila Gene Expression Pattern Annotation through Multi-Instance Multi-Label Learning // Proc of the 21st International Joint Conference on Artificial Intelligence.Pasadena,USA,2009: 1445-1450
[41]
Taskar B,Wong M F,Abbeel P,et al.Link Prediction in Relational Data // Proc of the 17th Annual Conference on Neural Information Processing Systems.Vancouver,Canada,2003: 659-666
[42]
Tumulty K.Bushs Secret Spy Net Report [EB/OL].[2006-5-25].http://www.time.com/time/archive/preview /010987119402100.html
[43]
Macskassy S A,Provost F.Suspicion Scoring Based on Guilt-by-Aassociation,Collective Inference and Focused Data Access // Proc of the 1st International Conference on Intelligence Analysis.McLean,USA,2005:352-361
[44]
Neville J,Simsek O,Jensen D,et al.Using Relational Knowledge Discovery to Prevent Securities Fraud // Proc of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Chicago,USA,2005: 449- 458
[45]
Hill S,Provost F,Volinsky C.Network-Based Marketing: Identifying Likely Adopters via Consumer Networks.Statistical Science,2006,22(2): 256-276
[46]
Segal E,Wang H,Koller D.Discovering Molecular Pathways from Protein Interaction and Gene Expression Data.Bioinformatics,2003,19(Z1): 264-272
[47]
McDowell L K,Gupta K M,Aha D W.Cautious Inference in Collective Classification // Proc of the 22nd AAAI Conference on Artificial Intelligence.Vancouver,Canada,2007: 596-601
[48]
Friedman N,Getoor L,Koller D,et al.Learning Probabilistic Relational Models // Proc of the 16th International Joint Conference on Artificial Intelligence.Stockholm,Sweden,1999,Ⅱ: 1300-1309
[49]
Getoor L.Advanced Methods for Knowledge Discovery from Complex Data.London,UK: Springer-Verlag,2005
[50]
Macskassy S,Provost F.Classification in Networked Data: A Toolkit and a Univariate Case Study.Journal of Machine Learning Research,2007,8(1):935-983
[51]
Geman S,Geman D.Stochastic Relaxation,Gibbs Distributions and the Bayesian Restoration of Images.IEEE Trans on Pattern Analysis and Machine Intelligence,1984,6(6): 721-741
[52]
Macskassy S A,Provost F J.A Simple Relational Classifier // Proc of the 9th ACM SIGKDD Multi- Relational Data Mining Workshop.Washington,USA,2003: 64-76
[53]
Liu Dayou,Yu Peng,Gao Ying,et al.Research Progress in Statistical Relational Learning.Journal of Computer Research and Development,2008,45(12): 2110-2119 (in Chinese)(刘大有,于 鹏,高 滢,等.统计关系学习研究进展.计算机研究与发展,2008,45(12): 2110 -2119 )
[54]
Koller D,Pfeffer A.Probabilistic Frame-Based Systems // Proc of the 15th National Conference on Artificial Intelligence.Madison,USA,1998: 580-587
Neville J,Jensen D,Friedland L,et al.Learning Relational Probability Trees // Proc of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Washington,USA,2003: 625-630
[57]
Cohn D,Atlas L,Ladner R.Improving Generalization with Active Learning.Machine Learning,1994,15(2): 201-221
[58]
Lewis D D,Gale W A.A Sequential Algorithm for Training Text Classifiers // Proc of the 17th ACM SIGIR Conference on Research and Development in Information Retrieval.Dublin,Ireland,1994: 3-12
[59]
Lewis D,Catlett J.Heterogeneous Uncertainty Sampling for Supervised Learning // Proc of the 11th International Conference on Machine Learning.New Brunswick,USA,1994: 148-156
[60]
Seung S H,Opper M,Sompolinsky H.Query by Committee // Proc of the 5th Annual Workshop on Computational Learning Theory.Pittsburgh,USA,1992: 287-294
[61]
Roy N,McCallum A.Toward Optimal Active Learning through Sampling Estimation of Error Reduction // Proc of the 18th International Conference on Machine Learning.San Francisco,USA,2001: 441-448
[62]
Bilgic M,Getoor L.Link-Based Active Learning // Proc of the 23rd NIPS Workshop on Analyzing Networks and Learning with Graphs.Vancouver,Canada,2009: 136-142
[63]
Macskassy S A.Using Graph-Based Metrics with Empirical Risk Minimization to Speed up Active Learning on Networked Data // Proc of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Paris,France,2009: 597-606