全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种快速的双目标非支配排序算法

, PP. 538-547

Keywords: 多目标进化算法,非支配排序,前向比较,按需排序

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种快速的双目标非支配排序算法(BNSA)。设计了前向比较操作,以便快速识别非支配个体。提出了按需排序策略,避免生成多余的非支配前沿。论证BNSA算法的正确性,分析其时间复杂度为O(NlogN)。在9个标准的双目标优化测试问题上进行了比较实验。实验结果表明与其它3种非支配排序算法相比,BNSA算法在大多数测试问题上具有更快速的性能。当进化代数超过400代时,BNSA在所有的测试问题上都具有最好的加速效果。此外,BNSA算法简明、易于编程实现,可集成到任何基于非支配排序的多目标进化算法中,能较大程度地提高双目标优化的运行速度。

References

[1]  Coello C A,Lamont G B,Van Veldhuizen D A.Evolutionary Algorithms for Solving Multi-Objective Problems.2nd Edition.New York,USA: Springer-Verlag,2007
[2]  Gong Maoguo,Jiao Licheng,Yang Dongdong,et al.Research on Evolutionary Multi-Objective Optimization Algorithms.Journal of Software,2009,20(2): 271-289 (in Chinese)(公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究.软件学报,2009,20(2): 271-289)
[3]  Deb K,Pratap A,Agarwal S,et al.A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.IEEE Trans on Evolutionary Computation,2002,6(2): 182-197
[4]  Jensen M T.Reducing the Run-Time Complexity of Multiobjective EAs: The NSGA-II and Other Algorithms.IEEE Trans on Evolutionary Computation,2003,7(5): 503-515
[5]  Zheng Jinhua,Jiang Hao,Kuang Da,et al.An Approach of Constructing Multi-Objective Pareto Optimal Solutions Using Arenas Principle.Journal of Software,2007,18(6): 1287-1297 (in Chinese)(郑金华,蒋浩,邝达,等.用擂台赛法则构造多目标Pareto最优解集的方法.软件学报,2007,18(6): 1287-1297)
[6]  Berrichi A,Amodeo L,Yalaoui F,et al.Bi-Objective Optimization Algorithms for Joint Production and Maintenance Scheduling: Application to the Parallel Machine Problem.Journal of Intelligent Manufacturing,2009,20(4): 389-400
[7]  Jozefowiez N,Semet F,Talbi E G.An Evolutionary Algorithm for the Vehicle Routing Problem with Route Balancing.European Journal of Operational Research,2009,195(3): 761-769
[8]  Abido M A.Multiobjective Evolutionary Algorithms for Electric Power Dispatch Problem.IEEE Trans on Evolutionary Computation,2006,10(3): 315-329
[9]  Deb K,Datta R.A Hybrid Bi-Objective Evolutionary-Penalty Approach for Computationally Fast and Accurate Constrained Optimization.Technical Report,2010004.Kanpur Genetic Algorithms Laboratory,Indian Institute of Technology.Kanpur,India,2010
[10]  Deb K,Saha A.Multimodal Optimization Using a Bi-Objective Evolutionary Algorithm.Technical Report,2009006.Kanpur Genetic Algorithms Laboratory,Indian Institute of Technology.Kanpur,India,2009
[11]  Deb K,Goel T.Controlled Elitist Non-Dominated Sorting Genetic Algorithms for Better Convergence // Zitzler E,Deb K,Thiele L,et al,eds.Proc of the 1st International Conference on Evolutionary Multi-Criterion Optimization.Zurich,Switzerland,2001: 67-81

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133