全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于结构相似性和压缩变换的聚类方法

, PP. 637-644

Keywords: 聚类分析,离散拓扑流形,结构相似性,类结构,压缩变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对聚类分析在处理任意形状、任意密度和具有一定结构特征的数据集时存在的不足,首先在数据空间中建立离散拓扑流形,通过在此结构上定义邻域密度相似性和邻域密度变化光滑性两个相对性度量标准,并利用可达性给出样本结构相似性和类结构的定义,证明类结构关系是一个等价关系。然后将结构相似性当作吸引力,设计基于压缩变换的聚类方法,该方法具备处理任意形状、任意密度和解释性好等许多优点。最后在人工数据集和标准数据集上的比较实验结果表明,该方法在聚类效率和有效性上都明显优于其它聚类算法。

References

[1]  Richard O, Duda P E, Hart D G S. Pattern Classification. 2nd Edition. New York, USA: John Wiley Sons, 2001
[2]  Theodoridis S, Koutroumbas K. Pattern Recognition. 2nd Edition. Amsterdam, Netherlands: Elsevier, 2003
[3]  Zhang Tian, Ramakrishnan R, Livny M.BIRCH: An Efficient Data Clustering Method for Very Large Databases // Proc of the ACM SIGMOD International Conference on Management of Data. Montreal, Canada, 1996: 103-114
[4]  Ester M, Kriegel H P, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise // Proc of the ACM SIGKDD International Conference on Management of Data. Montreal, Canada, 1996: 226-231
[5]  Wang Wei, Yang Jiong, Muntz R. STING: A Statistical Information Grid Approach to Spatial Data Mining // Proc of the 23rd International Conference on Very Large Databases. Athens, Greece, 1997: 186-196
[6]  Xu Linli, Neufeld J, Larson B, et al. Maximum Margin Clustering // Saul L K, Weiss Y, Bottou L, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2005, XVII: 1537-1544
[7]  Chan P M, Schlag M D F, Zien J Y. Spectral k-Way Ratio-Cut Partitioning and Clustering // Proc of the 30th International Design Automation Conference. Dallas, USA, 1993: 749-754
[8]  Frey B J, Dueck D. Clustering by Passing Messages between Data Points. Science, 2007, 315(5814): 972-976
[9]  Shuai Dianxun, Dong Yumin, Shuai Qing. A New Data Clustering Approach: Generalized Cellular Automata. Information Systems, 2007, 32(7): 968-977
[10]  Zhang Chaolin, Zhang Xuegong, Zhang M Q, et al. Neighbor Number, Valley Seeking and Clustering. Pattern Recognition Letters, 2007, 28(2): 173-180
[11]  Dong Yihong, Cao Shaoka, Chen Ken, et al. PFHC: A Clustering Algorithm Based on Data Partitioning for Unevenly Distributed Datasets. Fuzzy Sets and Systems, 2009, 160(13): 1886-1901
[12]  Wang Xi, Yang Chunyu, Zhou Jie. Clustering Aggregation by Probability Accumulation. Pattern Recognition, 2009, 42(5): 668-675

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133