Zhang Tian, Ramakrishnan R, Livny M.BIRCH: An Efficient Data Clustering Method for Very Large Databases // Proc of the ACM SIGMOD International Conference on Management of Data. Montreal, Canada, 1996: 103-114
[4]
Ester M, Kriegel H P, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise // Proc of the ACM SIGKDD International Conference on Management of Data. Montreal, Canada, 1996: 226-231
[5]
Wang Wei, Yang Jiong, Muntz R. STING: A Statistical Information Grid Approach to Spatial Data Mining // Proc of the 23rd International Conference on Very Large Databases. Athens, Greece, 1997: 186-196
[6]
Xu Linli, Neufeld J, Larson B, et al. Maximum Margin Clustering // Saul L K, Weiss Y, Bottou L, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2005, XVII: 1537-1544
[7]
Chan P M, Schlag M D F, Zien J Y. Spectral k-Way Ratio-Cut Partitioning and Clustering // Proc of the 30th International Design Automation Conference. Dallas, USA, 1993: 749-754
[8]
Frey B J, Dueck D. Clustering by Passing Messages between Data Points. Science, 2007, 315(5814): 972-976
[9]
Shuai Dianxun, Dong Yumin, Shuai Qing. A New Data Clustering Approach: Generalized Cellular Automata. Information Systems, 2007, 32(7): 968-977
[10]
Zhang Chaolin, Zhang Xuegong, Zhang M Q, et al. Neighbor Number, Valley Seeking and Clustering. Pattern Recognition Letters, 2007, 28(2): 173-180
[11]
Dong Yihong, Cao Shaoka, Chen Ken, et al. PFHC: A Clustering Algorithm Based on Data Partitioning for Unevenly Distributed Datasets. Fuzzy Sets and Systems, 2009, 160(13): 1886-1901
[12]
Wang Xi, Yang Chunyu, Zhou Jie. Clustering Aggregation by Probability Accumulation. Pattern Recognition, 2009, 42(5): 668-675