全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于局部相关维度的流形离群点检测算法

, PP. 629-636

Keywords: 数据挖掘,离群点检测,流形学习,局部相关维度

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的离群点检测算法不适合检测流形离群点,目前专门针对流形离群点检测的算法报道较少。为此,基于实验观察的启示,提出用流形局部相关维度检测流形离群点的算法。首先探讨内在维度的性质,并基于实验观察提出用流形局部相关维度来度量流形离群点,然后证明流形局部相关维度可表征数据样本离群的性质,最后基于此性质提出流形离群点检测算法。在人工数据与真实数据上的实验表明本算法可检测流形离群点,且本算法比最近报道的流形除噪算法具有更优的性能。

References

[1]  Gionis A, Hinneburg A, Papadimitriou S, et al. Dimension Induced Clustering // Proc of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. Chicago, USA, 2005: 51-60
[2]  Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500): 2319-2323
[3]  Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Local Linear Embedding. Science, 2000, 290(5500): 2323-2326
[4]  Belkin M, Niyogi P. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering // Dietterich T G, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2002, XIV: 585-591
[5]  Zhang Zhenyue, Zha Hongyuan. Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment. SIAM Journal of Scientific Computing, 2004, 26(1): 313-338
[6]  Choi H, Choi S. Robust Kernel Isomap. Pattern Recognition, 2007, 40(3): 853-862
[7]  Zhang Zhenyue, Zha Hongyuan. Local Linear Smoothing for Nonlinear Manifold Learning. Technical Report, CSE-03-003. State College, USA: Pennsylvania State University, 2003
[8]  Chen Haifeng, Jiang Guofei, Yoshihira K J. Robust Nonlinear Dimensionality Reduction for Manifold Learning // Proc of the 18th International Conference on Pattern Recognition. Hong Kong, China, 2006, Ⅱ: 447-450
[9]  Wang Weiran, Carreira-Perpinan M A. Manifold Blurring Mean Shift Algorithms for Manifold Denoising // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 1759-1766
[10]  Barnett V, Lewis T. Outliers in Statistical Data. New York, USA: John Wiley, 1994
[11]  Breunig M M, Kriegel H, Ng R T, et al. LOF: Identifying Density-Based Local Outliers // Proc of the 6th ACM SIGMOD International Conference on Management of Data. Dallas, USA, 2000: 93-104
[12]  Grassberger P, Procaccia I. Measuring the Strangeness of Strange Attractors. Physica D: Nonlinear Phenomena, 1983, 9(1/2): 189-208
[13]  Costa J A, Hero A O. Geodesic Entropic Graphs for Dimension and Entropy Estimation in Manifold Learning. IEEE Trans on Signal Processing, 2004, 52(8): 2210-2221
[14]  Hawkins D. Identification of Outliers. London, UK: Chapman and Hall, 1980
[15]  Algazi V R, Duda R O, Thompson D M, et al. The CIPIC HRTF Database // Proc of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.New York, USA, 2001: 99-102
[16]  Duraiswami R, Raykar V C. The Manifolds of Spatial Hearing // Proc of the International Conference on Acoustics, Speech, and Signal Processing. Philadelphia, USA, 2005: 285-288

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133