全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多示例学习的异常行为检测方法

, PP. 862-868

Keywords: 异常行为检测,轨迹分段,层次狄利克雷过程-隐马尔科夫模型(HDP-HMM),多示例学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

在基于轨迹分析的异常行为检测方法中,被标记为异常的轨迹往往仅在整条轨迹的某个局部存在异常,轨迹的其余部分都是正常行为。然而,传统的基于整条轨迹建模的方法很难检测轨迹的局部异常。针对上述问题,提出一种在多示例学习框架下基于轨迹分段的异常行为检测方法。该方法首先根据轨迹的曲率,将轨迹分割成若干相互独立的子段。然后采用层次狄利克雷过程-隐马尔科夫模型对每个子段建模。最后在多示例学习框架下,以整条轨迹为包,正常轨迹为负包,异常轨迹为正包,轨迹子段为包的示例进行学习。通过实验验证,该方法在准确率和召回率上都优于传统的基于轨迹建模的方法。

References

[1]  Adam A, Rivlin E, Shimshoni I, et al. Robust Real-Time Unusual Event Detection Using Multiple Fixed-Location Monitors. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(3): 555-560
[2]  Xiang Tao, Gong Shaogang. Incremental and Adaptive Abnormal Behaviour Detection. Computer Vision and Image Understanding, 2008, 111(1): 59-73
[3]  Kratz L, Nishino K. Anomaly Detection in Extremely Crowded Scenes Using Spatio-Temporal Motion Pattern Models // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 1446-1553
[4]  Benezeth Y, Jodoin P, Saligrama V, et al. Abnormal Events Detection Based on Spatio-Temporal Co-Occurrences // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009, 2458- 2465
[5]  Hu Zhilan, Jiang Fan, Wang Guijin, et al. Anomaly Detection Based on Motion Direction. Acta Automatica Sinica, 2008, 34(11): 1348-1357 (in Chinese) (胡芝兰,江 帆,王贵锦,等.基于运动方向的异常行为检测.自动化学报, 2008, 34(11): 1348-1357)
[6]  Zhang Xiaoxing, Liu Hun, Gao Yang, et al. Detecting Abnormal Events via Hierarchical Dirichlet Processes // Proc of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Bangkok, Thailand, 2009: 278-289
[7]  Hu D H, Zhang Xiaoxing, Yin Jie, et al. Abnormal Activity Recognition Based on HDP-HMM Models // Proc of the 21st International Joint Conference on Artificial Intelligence. Pasadena, USA, 2009: 1715-1720
[8]  Jiang Fan, Wu Ying, Katsaggelos A K. Abnormal Event Detection Based on Trajectory Clustering by 2-Depth Greedy Search // Proc of the 33rd IEEE International Conference on Acoustics, Speech, and Signal Processing. Las Vegas, USA, 2008: 2129-2132
[9]  Lee J G, Han Jiawei, Li Xiaolei. Trajectory Outlier Detection: A Partition-and-Detect Framework // Proc of the 24th International Conference on Data Engineering. Cancun, Mexico, 2008: 140-149
[10]  Rabiner L R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc of the IEEE, 1989, 77(2): 257-286
[11]  Kim J, Grauman K. Observe Locally, Infer Globally: A Space-Time MRF for Detecting Abnormal Activities with Incremental Updates // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 2921-2928
[12]  Lu Jun, Wu Zhongwang, Wang Yu, et al. Research on Abnormal Behavior Detection Based on KNN Algorithm. Computer Engineering, 2007, 33(7): 133-135 (in Chinese) (卢 鋆,吴忠望,王 宇,等.基于KNN算法的异常行为检测方法研究.计算机工程, 2007, 33(7): 133-135)
[13]  Peng Xinguang, Jin Yan. Frequency Pattern Classification of Short Sequence for Anomaly Detection. Journal of Computer Research and Development, 2007, 44(z1): 286-290 (in Chinese) (彭新光,靳 燕.短序列频度模式分类异常检测.计算机研究与发展, 2007, 44(z1): 286-290)
[14]  Zhong Cheng, Luo Cheng. Kernel Clustering and Sequence Analysis Methods for Unsupervised Anomaly Detection. Journal of Computer Research and Development, 2008, 45(z1): 326-331(in Chinese) (钟 诚,罗 程.无监督异常检测的核聚类和序列分析方法.计算机研究与发展, 2008, 45(z1): 326-331)
[15]  Bashir F, Khokhar A, Schonfeld D. A Hybrid System for Affine-Invariant Trajectory Retrieval // Proc of the 6th ACM SIGMM International Workshop on Multimedia Information. New York, USA, 2004: 235-242
[16]  Bashir F I, Khokhar A A, Schonfeld D. Object Trajectory Based Activity Classification and Recognition Using Hidden Markov Models. IEEE Trans on Image Processing, 2007, 16(7): 1912-1919
[17]  Teh Y W, Jordan M I, Beal M J, et al. Hierarchical Dirichlet Processes. American Statistical Association, 2006, 101(476): 1566-1581
[18]  Fox E, Sudderth E, Jordan M I, et al. Developing a Tempered HDP-HMM for Systems with State Persistence. Technical Report, P-2777. Cambridge, USA: MIT, 2007
[19]  Dietterich T G, Lathrop R H, Lozano-Pérez T. Solving the Multiple-Instance Problem with Axis-Parallel Rectangles. Artificial Intelligence, 1997, 89(1/2): 31-71
[20]  Wang Jun, Zucker J D. Solving the Multiple-Instance Problem: A Lazy Learning Approach // Proc of the 18th International Conference on Machine Learning. Stanford, USA, 2000: 1119-1126
[21]  Zhou Zhihua. Multi-Instance Learning: A Survey [EB/OL]. [2010-04-01]. http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/techrep04.pdf
[22]  García-García D, Hernández E P, María F D. A New Distance Measure for Model-Based Sequence Clustering. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(7): 1325-1331

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133