全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于灰关联分析的多数据流聚类

, PP. 769-775

Keywords: 聚类,多数据流,灰关联分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为当前数据流挖掘研究的热点之一,多数据流聚类要求在跟踪多个数据流随时间演化的同时按其相似程度进行划分。文中提出一种基于灰关联分析并结合近邻传播聚类的多数据流聚类方法。该方法基于一种灰关联度,将多个数据流的原始数据压缩成可增量更新的灰关联概要信息,并根据该信息计算多个数据流之间的灰关联度作为其相似性测度,最后应用近邻传播聚类算法生成聚类结果。在真实数据集上的对比实验证明该方法的有效性。

References

[1]  Abdulsalam H, Skillicorn D B, Martin P. Classification Using Streaming Random Forests. IEEE Trans on Knowledge and Data Engineering, 2011, 23(1): 22-36
[2]  Masud M M, Chen Qing, Khan L, et al. Addressing Concept Evolution in Concept-Drifting Data Streams // Proc of the 10th IEEE International Conference on Data Mining. Sydney, Australia, 2010: 929-934
[3]  Woo H J, Lee W S. EstMax: Tracing Maximal Frequent Item Sets Instantly over Online Transactional Data Streams. IEEE Trans on Knowledge and Data, 2008, 21(10): 1418-1431
[4]  Aggarwal C C, Han Jiawei, Wang Jianyong, et al. A Framework for Clustering Evolving Data Streams // Proc of the 29th International Conference on Very Large Data Bases. Berlin, Germany, 2003: 81-102
[5]  Masud M M, Gao J, Khan L, et al. A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data // Proc of the 8th IEEE International Conference on Data Mining. Pisa, Italy, 2008: 929-934
[6]  Kranen P, Assent I, Baldauf C, et al. Self-Adaptive Anytime Stream Clustering // Proc of the 9th IEEE International Conference on Data Mining. Miami, USA, 2009: 249-258
[7]  Cao Feng, Ester M, Qian Weining, et al. Density-Based Clustering over an Evolving Data Stream with Noise // Proc of the SIAM Conference on Data Mining. Bethesda, USA, 2006: 328-339
[8]  Chen Yixin, Tu Li. Density-Based Clustering for Real-Time Stream Data // Proc of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007: 133-142
[9]  Heinz C, Seeger B. Cluster Kernels: Resource-Aware Kernel Density Estimators over Streaming Data. IEEE Trans on Knowledge and Data Engineering, 2008, 20(7): 880-893
[10]  Rodrigues P P, Gama J, Pedroso J P. Hierarchical Clustering of Time-Series Data Streams. IEEE Trans on Knowledge and Data Engineering, 2008, 20(5): 615-627
[11]  Ho S S, Wechsler H. A Martingale Framework for Detecting Changes in Data Streams by Testing Exchangeability. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2113-2127
[12]  Papadimitriou S, Sun Jimeng, Faloutsos C. Streaming Pattern Discovery in Multiple Time-Series // Proc of the 31st International Conference on Very Large Data Bases. Trondheim, Norway, 2005: 697-708
[13]  Sakurai Y, Papadimitriou S, Faloutsos C. BRAID: Stream Mining through Group Lag Correlations // Proc of the ACM SIGMOD International Conference on Management of Data. Baltimore, USA, 2005: 599-610
[14]  Yang J. Dynamic Clustering of Evolving Streams with a Single Pass // Proc of the 19th International Conference on Data Engineering. Bangalore, India, 2003: 695-697
[15]  Beringer J, Hullermeier E. Online Clustering of Parallel Data Streams. Data Mining and Knowledge Discovery, 2006, 58(2): 180-204
[16]  Dai Biru, Huang J W, Yeh M Y, et al. Adaptive Clustering for Multiple Evolving Streams. IEEE Trans on Knowledge and Data Engineering, 2006, 18(9): 1166-1180
[17]  Deng Julong. Elements on Grey Theory. Wuhan, China: Huazhong University of Science and Technology Press, 2002 (in Chinese)(邓聚龙.灰理论基础.武汉:华中科技大学出版社, 2002)
[18]  Zhang Qishan. Difference Information Theory of Grey Hazy Set. Beijing, China: Petroleum Industry Press, 2002 (in Chinese)(张岐山.灰朦胧集的差异信息理论.北京:石油工业出版社, 2002)
[19]  Wang Qingyin, Zhao Xiuheng. The Relational Analysis of C-Mode. Journal of Huazhong University of Science and Technology, 1999, 27(3): 75-77 (in Chinese)(王清印,赵秀恒.C型关联分析.华中理工大学学报, 1999, 27(3): 75-77 )
[20]  Tang Wuxiang. The Concept and the Computation Method of Ts Correlation Degree. Application of Statistics and Management, 1995, 14(1): 34-37 (in Chinese)(唐五湘.T型关联度及其计算方法.数理统计与管理, 1995, 14(1): 34-37 )
[21]  Sun Yugang, Dang Yaoguo. Improvement on Grey T s Correlation Degree. System Engineering-Theory Practice, 2008, 28(4): 135-139 (in Chinese)(孙玉刚,党耀国.灰色T型关联度的改进.系统工程理论与实践, 2008, 28(4): 135-139)
[22]  Liu Sifeng, Xie Naiming. The Theory and the Application of Grey System. 4th Edition. Beijing, China: Science Press, 2008 (in Chinese)(刘思峰,谢乃明.灰色系统理论及其应用.第4版.北京:科学出版社, 2008)
[23]  Wang Zhengxin, Dang Yaoguo, Cao Mingxia. Weighted Degree of Grey Incidence Based on Optimized Entropy. System Engineering and Electronics, 2010, 32(4): 774-776 (in Chinese)(王正新,党耀国,曹明霞.基于灰熵优化的加权灰色关联度.系统工程与电子技术, 2010, 32(4): 774-776)
[24]  Wang Jingcheng, Zhu Wenzhi, Zhang Yanbin. Improved Algorithm of Grey Incidence Degree Based on Area. System Engineering and Electronics, 2010, 32(4): 777-779 (in Chinese)(王靖程,诸文智,张彦斌.基于面积的改进灰关联度算法.系统工程与电子技术, 2010, 32(4): 777-779)
[25]  Tu Li, Chen Ling, Zou Lingjun. Clustering Multiple Data Streams Based on Correlation Analysis. Journal of Software, 2009, 20(7): 1756-1767(in Chinese)(屠 莉,陈 崚,邹凌君.基于相关分析的多数据流聚类.软件学报, 2009, 20(7): 1756-1767)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133