全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于动态交叉协同的属性量子进化约简与分类学习级联算法

, PP. 733-742

Keywords: 属性约简,规则分类学习,粗糙熵阈值,量子角动态旋转,交叉协同进化

Full-Text   Cite this paper   Add to My Lib

Abstract:

属性约简与规则分类学习是粗糙集理论研究和应用的重要内容。文中充分利用量子计算加速算法速度和混合蛙跳算法高效协同搜索等优势,提出一种基于动态交叉协同的量子蛙跳属性约简与分类学习的级联算法。该算法用量子态比特进行蛙群个体编码,以动态量子角旋转调整策略实现属性染色体快速约简,并在粗糙熵阈值分类标准内采用量子蛙群混合交叉协同进化机制提取和约简分类规则、组合决策规则链等,最后构造属性约简和分类学习双重功能级联模型。仿真实验验证该算法不仅具有较高的全局优化性能,且属性约简与规则分类学习的精度和效率均超过同类算法。

References

[1]  Feynman R, Shor P W. Simulating Physics with Computers. International Journal of Theoretical Physics, 1982, 21(6): 467-488
[2]  Deutsch D. Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proc of the Royal Society of London: Series A, 1985, 400(1818): 97-117
[3]  Bernstein E, Vazirani U. Quantum Complexity Theory // Proc of the 25th Annual ACM Symposium on the Theory of Computation. San Diego, USA, 1993: 11-20
[4]  Shor P W. Algorithms for Quantum Computation: Discrete Log and Factoring // Proc of the 35th Annual Symposium on Foundations of Computer Science. Santa Fe, USA, 1994: 20-22
[5]  Grover L K. A Fast Quantum Mechanical Algorithm for Database Search // Proc of the 28th Annual ACM Symposium on the Theory of Computing. Philadelphia, USA, 1996: 212-219
[6]  Eusuff M M, Lansey K E. Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm. Journal of Water Resources Planning and Management, 2003, 129(3): 210-225
[7]  Han K H, Kim J H. Quantum-Inspired Evolutionary Algorithms with a New Termination Criterion, Gate and Two-Phase Scheme. IEEE Trans on Evolutionary Computation, 2004, 8(2): 156-169
[8]  Jiao Licheng, Li Yangyang, Gong Maoguo, et al. Quantum-Inspired Immune Clonal Algorithm for Global Numerical Optimization. IEEE Trans on Systems, Man and Cybernetics, 2008, 38(5): 1234-1253
[9]  Xie Guangjun, Fan Haiqiu, Cao Licheng. A Quantum Neural Computational Network Model. Journal of Fudan University: Natural Science, 2004, 43(4): 700-703 (in Chinese)(解光军,范海秋,操礼程.一种量子神经计算网络模型.复旦大学学报:自然科学版, 2004, 43(4): 700-703)
[10]  Yang Junan, Zhuang Zhenquan, Shi Liang. Multi-Universe Parallel Quantum Genetic Algorithm. Acta Electronica Sinica, 2004, 32(6): 923-928 (in Chinese)(杨俊安,庄振泉,史 亮.多宇宙并行量子遗传算法.电子学报, 2004, 32(6): 923-928)
[11]  Peters J F, Skowron A. A Rough Sets Approach to Knowledge Discovery. International Journal of Intelligent Systems, 2002, 17(2): 109-112
[12]  Sun Hui , Li Wen, Liu Dayou. The Minimization of Axiom Groups of Rough Set. Chinese Journal of Computers, 2002, 25(2): 201- 209 (in Chinese)(孙 辉,李 文,刘大有.粗集公理组的极小化.计算机学报, 2002, 25(2): 201-209)
[13]  Hu Feng, Wang Guoyin. Quick Reduction Algorithm Based on Attribute Order. Chinese Journal of Computers, 2007, 30(8): 1429-1435 (in Chinese)(胡 峰,王国胤.属性序下的快速约简算法.计算机学报, 2007, 30(8): 1429-1435)
[14]  Sun Lijuan, Wang Ruchuan. Application of Combination of Quantum Computation and Genetic Algorithm to Computer Network Optimization. Journal of Electronics Information Technology, 2007, 29(4): 920-923 (in Chinese)(孙力娟,王汝传.量子计算与遗传算法的融合及其在计算机通信网优化中的应用.电子与信息学报, 2007, 29(4): 920-923)
[15]  Liang J J, Qin A K, Suganthan P N, et al. Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Trans on Evolutionary Computation, 2006, 10(3): 281- 295
[16]  Luo Xuehui, Yang Ye, Li Xia. Modified Shuffled Frog-Leaping Algorithm to Solve Traveling Salesman Problem. Journal on Communication, 2009, 30(7): 130-135 (in Chinese) (罗雪晖,杨 烨,李 霞.改进混合蛙跳算法求解旅行商问题.通信学报, 2009, 30(7): 130-135)
[17]  Wang Jiayang, Xie Ying. Minimal Attribute Reduction Algorithm Based on Quantum Particle Swarm Optimization. Computer Engineering, 2009, 35(12): 148-150 (in Chinese)(王加阳,谢 颖.基于量子粒子群优化的最小属性约简算法.计算机工程, 2009, 35(12): 148-150)
[18]  Liao Jiankun, Ye Dongyi. Minimal Attribute Reduction Algorithm Based on Particle Swarm Optimization with Immunity. Journal of Computer Applications, 2007, 27(3): 550-552, 555(in Chinese)(廖建坤, 叶东毅.基于免疫粒子群优化的最小属性约简算法.计算机应用, 2007, 27(3): 550-552, 555)
[19]  Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers. Machine Learning, 1997, 29(2): 131-163
[20]  Meretakis D, Wuthrich B. Extending Nave Bayes Classification Using Long Itemsets // Proc of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, USA, 1999: 165-174
[21]  Sun Tingkai, Chen Songcan. Class Label versus Sample Label-Based CCA. Applied Mathematics and Computation, 2007,185(1): 272- 283
[22]  Webb G I, Boughton J R, Wang Zhihai. Not so Nave Bayes: Aggregating One-Dependence Estimators. Machine Learning, 2005, 58(1): 5-24
[23]  Do T D, Hui S C, Fong B. Associative Classification with Artificial Immune System. IEEE Trans on Evolutionary Computation, 2009, 13(2): 217-228
[24]  Liu Bo, Abbass H A, McKay B. Classification Rule Discovery with Ant Colony Optimization. IEEE Computational Intelligence Bulletin, 2004, 3(1): 31-35

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133