全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于频繁项集的互补替代关系挖掘算法

, PP. 157-165

Keywords: 数据挖掘,频繁项集,互补替代关系,集合枚举树

Full-Text   Cite this paper   Add to My Lib

Abstract:

以TOP-k-ClosedMiner算法为基础,提出基于索引的频繁项集挖掘算法Index-FIM。该算法用位向量表示数据集,同时引入广度扩展剪枝和区域索引跳过策略。实验表明,Index-FIM算法在稀疏数据集上挖掘频繁项集具有较高的执行效率。为得到能直接用于预测的有效信息,提出基于频繁项集的互补替代关系挖掘算法(CARM)。通过对已挖掘出的各频繁项集中的频繁项进行相关性计算,得到频繁项之间的互补替代关系,并以互补替代关系图(CAG)的形式直观表示,便于决策者做出准确、合理的判断。实验表明,CAG比频繁项集表示的信息更有效、更精确。

References

[1]  Verhein F,Chawla S.Using Significant,Positively Associated and Relatively Class Correlated Rules for Associative Classification of Imbalanced Datasets // Proc of the 7th IEEE International Conference on Data Mining.Omaha,USA,2007: 679 - 684
[2]  Tsay Y J,Hsu T J,Yu J R.FIUT: A New Method for Mining Frequent Itemsets.Information Sciences: An International Journal,2009,179(11): 1724-1737
[3]  Burdick D,Calimlim M,Gehrke J.MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases // Proc of the 17th International Conference on Data Engineering.Heidelberg,Germany,2001: 443-452
[4]  Gouda K,Zaki M J.Efficiently Mining Maximal Frequent Itemsets // Proc of the IEEE International Conference on Data Mining.San Jose,USA,2001: 163-170
[5]  Wang Liming,Li Kun.Algorithm of Studying the Structure of Graphical Utility Based on Nearest-Biclusters Collaboration Filtering Technology.Chinese Journal of Computers,2010,33(12): 2291-2299 (in Chinese)(王黎明,李 琨.基于Nearest-Biclusters 协作过滤技术的效用图结构学习算法.计算机学报,2010,33(12): 2291-2299)
[6]  Luo Xiangfeng,Liang Guoning,Liu Shijun.Generating Associated Relation between Documents // Proc of the 10th IEEE International Conference on High Performance Computing and Communications.Dalian,China,2008: 831-836
[7]  Natarajan R,Shekar B.Understandability of Association Rules: A Heuristic Measure to Enhance Rule Quality // Guillet F J,Hamilton H J,eds.Quality Measures in Data Mining.New York,USA: Springer Uerlag,2007,43: 179-203
[8]  Hilderman R J,Peckham T.Statistical Methodologies for Mining Potentially Interesting Contrast Sets // Guillet F J,Hamilton H J,eds. Quality Measures in Data Mining.New York,USA: Springer Uerlag,2007,43: 153-177
[9]  Hilderman R J,Hamilton H J.Measuring the Interestingness of Discovered Knowledge: A Principled Approach.Intelligent Data Analysis,2003,7(4): 347-382
[10]  Hilderman R J,Hamilton H J.Evaluation of Interestingness Measures for Ranking Discovered Knowledge // Proc of the 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining.Shenzhen,China,2001: 247-259
[11]  Zhang Yulei,Zhao Liping.Quantitative Analysis of the Relationship of Bacteria Based on the Dinucleotide Frequency Profile.Chinese Journal of Microecology,2006,18(4): 261-263 (in Chinese)(张宇镭,赵立平.基于双核酸频率分布特征的细菌亲缘关系定量分析.中国微生态学杂志,2006,18(4): 261-263)
[12]  Gonzales C,Perny P,Queiroz S.Preference Aggregation with Graphical Utility Models // Proc of the 23rd AAAI Conference on Artificial Intelligence.Chicago,USA,2008: 1037-1042
[13]  Wang Liming,Li Kun.A Model of Negotiation Based on GAI Multi-Attribute Dependencies.Pattern Recognition and Artificial Intelligence,2008,21(5): 569-576 (in Chinese) (王黎明,李 琨.基于GAI多属性依赖的协商模型.模式识别与人工智能,2008,21(5): 569-576)
[14]  Wang Liming,Huang Houkuan,Chai Yumei.An Algorithm for Resource Negotiation Based on Progresses Reduction in Process of Calculating.Pattern Recognition and Artificial Intelligence,2005,18(3): 273-280 (in Chinese)(王黎明,黄厚宽,柴玉梅.推测计算中基于进程约简的资源协商算法.模式识别与人工智能,2005,18(3): 273-280)
[15]  Han Jiawei,Pei Jian,Yin Yiwen.Mining Frequent Patterns without Candidate Generation // Proc of the ACM SIGMOD International Conference on Management of Data.Dallas,USA,2000: 1-12
[16]  Tsay Y J,Chiang J Y.CBAR: An Efficient Method for Mining Association Rules.Knowledge Based Systems,2005,18(2/3): 99-105
[17]  Bashir S,Jan Z,Baig A R.Fast Algorithms for Mining Interesting Frequent Itemsets without Minimum Support [EB/OL].[2009-04-21].http://arxiv.org/ftp/arxiv/papers/0904/0904.3319.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133