全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于稀疏表示的多标记学习算法

, PP. 124-129

Keywords: 机器学习,多标记学习,稀疏表示,压缩感知,l1-最小化

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决多标记数据的分类问题,提出基于稀疏表示的多标记学习算法。首先将待分类样本表示为训练样本集上的稀疏线性组合,基于l1-最小化方法求得最稀疏的系数解。然后利用稀疏系数的判别信息提出一个计算待分类样本对各标记的隶属度的方法。最后根据隶属度对标记进行排序,进而完成分类。在Yeast基因功能分析、自然场景分类和web页面分类上的实验表明,该算法能够有效解决多标记数据的分类问题,与其它方法相比取得更好的结果。

References

[1]  Schapire R E,Singer Y.Boostexter: A Boosting-Based System for Text Categorization.Machine Learning,2000,39(2/3): 135-168
[2]  Elisseeff A,Weston J.A Kernel Method for Multi-Labelled Classification // Dietterich T G,Becker S,Ghahramani Z,eds.Advances in Neural Information Processing Systems.Cambridge,USA: MIT Press,2002,XIV: 681-687
[3]  Boutell M R,Luo J,Shen X,et al.Learning Multi-Label Scene Classification.Pattern Recognition,2004,37 (9): 1757-1771
[4]  de Comité F,Gilleron R,Tommasi M.Learning Multi-Label Alternating Decision Tree from Texts and Data∥Proc of the 3rd International Conference on Machine Learning and Data Mining in Pattern Recognition.Leipzig,Germany,2003: 35-49
[5]  Zhang Minling,Zhou Zhihua.ML-KNN:A Lazy Learning Approach to Multi-Label Learning.Pattern Recognition,2007,40(7): 2038-2048
[6]  Wright J,Yang A Y,Ganesh A,et al.Robust Face Recognition via Sparse Representation.IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31(2): 201-227
[7]  Candès E J,Romberg J,Tao T.Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information.IEEE Trans on Information Theory,2006,52(2): 489-509
[8]  Candès E J,Tao T.Near-Optimal Signal Recovery from Random Projections: Universal Encoding Strategies? IEEE Trans on Information Theory,2006,52(12): 5406-5425
[9]  Donoho D.For Most Large Underdetermined Systems of Linear Equations the Minimal l1-norm Solution Is Also the Sparsest Solution.Communications on Pure and Applied Mathematics,2006,59 (6):797-829
[10]  Zhao Ruizhen,Liu Xiaoyu,Li C C,et al.Sparse Representation-Based Wavelet De-Noising.Science China: Information Sciences,2010,40(1): 33-40 (in Chinese)(赵瑞珍,刘晓宇,Li C C,等.基于稀疏表示的小波去噪.中国科学:信息科学,2010,40(1): 33-40)
[11]  Cai Zemin,Lai Jianhuang.An Over-Complete Learned Dictionary-Based Image De-Noising Method.Acta Electronica Sinica,2009,37(2): 347-350 (in Chinese) (蔡泽民,赖剑煌.一种基于超完备字典学习的图像去噪方法.电子学报,2009,37(2): 347-350)
[12]  Qiao Lishan,Chen Songcan,Tan Xiaoyang.Sparsity Preserving Projection with Applications to Face Recognition.Pattern Recognition,2010,43(1): 331-341
[13]  Cheng Bin,Yang Jianchao,Yan Shuicheng,et al.Learning with l1-Graph for Image Analysis.IEEE Trans on Image Processing,2010,19(4): 858-866
[14]  Han Yahong,Wu Fei,Zhuang Yueting,et al.Multi-Label Transfer Learning with Sparse Representation. IEEE Trans on Circuits and Systems for Video Technology,2010,20(8): 1110-1121
[15]  Figueiredo M,Nowak R,Wright S.Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems.IEEE Journal on Selected Topics in Signal Processing,2007,1(4): 586-598
[16]  Li Hong,Xie Zheng,Xiang Yao,et al.Multi-Label Learning by LLE Dimension Reduction and Bayesian Classification.Journal of Systems Engineering and Electronics,2009,31(6): 1467-1472 (in Chinese)(李 宏,谢 政,向 遥,等.一种采用LLE降维和贝叶斯分类的多类标学习算法.系统工程与电子技术,2009,31(6): 1467-1472)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133