全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于半监督学习的增量图像分类方法

, PP. 111-117

Keywords: 半监督学习,图像分类,增量学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

为有效使用大量未标注的图像进行分类,提出一种基于半监督学习的图像分类方法。通过共同的隐含话题桥接少量已标注的图像和大量未标注的图像,利用已标注图像的Must-link约束和Cannot-link约束提高未标注图像分类的精度。实验结果表明,该方法有效提高Caltech-101数据集和7类图像集约10%的分类精度。此外,针对目前绝大部分半监督图像分类方法不具备增量学习能力这一缺点,提出该方法的增量学习模型。实验结果表明,增量学习模型相比无增量学习模型提高近90%的计算效率。关键词半监督学习,图像分类,增量学习中图法分类号TP391。41IncrementalImageClassificationMethodBasedonSemi-SupervisedLearningLIANGPeng1,2,LIShao-Fa2,QINJiang-Wei2,LUOJian-Gao31(SchoolofComputerScienceandEngineering,GuangdongPolytechnicNormalUniversity,Guangzhou510665)2(SchoolofComputerScienceandEngineering,SouthChinaUniversityofTechnology,Guangzhou510006)3(DepartmentofComputer,GuangdongAIBPolytechnicCollege,Guangzhou510507)ABSTRACTInordertouselargenumbersofunlabeledimageseffectively,animageclassificationmethodisproposedbasedonsemi-supervisedlearning。Theproposedmethodbridgesalargeamountofunlabeledimagesandlimitednumbersoflabeledimagesbyexploitingthecommontopics。Theclassificationaccuracyisimprovedbyusingthemust-linkconstraintandcannot-linkconstraintoflabeledimages。TheexperimentalresultsonCaltech-101and7-classesimagedatasetdemonstratethattheclassificationaccuracyimprovesabout10%bytheproposedmethod。Furthermore,duetothepresentsemi-supervisedimageclassificationmethodslackingofincrementallearningability,anincrementalimplementationofourmethodisproposed。Comparingwithnon-incrementallearningmodelinliterature,theincrementallearningmethodimprovesthecomputationefficiencyofnearly90%。

References

[1]  Hofmann T.Unsupervised Learning by Probabilistic Latent Semantic Analysis.Machine Learning,2001,42(2): 177-196
[2]  Sivic J,Russell B C,Efros A A,et al.Discovering Object Categories in Image Collections // Proc of the 10th IEEE International Conference on Computer Vision.Rio de Janeiro,Brazil,2005: 1-13
[3]  Liu D,Chen T.Semantic-Shift for Unsupervised Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition.Washington,USA,2006: 16-23
[4]  Liu D,Chen T.Unsupervised Image Categorization and Object Localization Using Topic Models and Correspondences between Images // Proc of the 11th International Conference on Computer Vision.Rio de Janeiro,Brazil,2007: 1-7
[5]  Li Lijia,Wang Gang,Li Feifei.OPTIMOL: Automatic Online Picture Collection via Incremental Model.International Journal of Computer Vision,2010,88(2): 147-168
[6]  Zhu Xiaojin,Ghahramani Z,Lafferty J.Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions // Proc of the IEEE Conference on Machine Learning.Washington,USA,2003: 912-919
[7]  Zhu Xiaojin.Semi-Supervised Learning Literature Survey.Technical Report,1530.Madison,USA: University of Wisconsin-Madison,2008
[8]  Bengio Y,Delalleau O,Roux N L,et al.Learning Eigenfunctions Links Spectral Embedding and Kernel PCA // Procs of the IEEE Conference on Neural Information Processing Systems.Hyatt Regency,Canada,2004: 2197-2219
[9]  Nadler B,Lafon S,Coifman R R,et al.Diffusion Maps,Spectral Clustering and Reaction Coordinates of Dynamical Systems.Applied and Computational Harmonic Analysis,2006,21(1): 113-127
[10]  Zhuang Liansheng,She Lanbo,Jiang Yunning,et al.Image Classification via Semi-Supervised PLSA // Proc of the 5th IEEE Conference on Image and Graphics.Xian,China,2009: 205-208
[11]  Nigam K,McCallum K A,Thrun S,et al.Text Classification from Labeled and Unlabeled Documents Using EM.Machine Learning,2000,39(2/3): 103-134
[12]  Xue Guirong,Dai Wenyuan,Yang Qiang,et al.Topic-Bridged PLSA for Cross-Domain Text Classification // Proc of the ACM Conference on Research and Development in Information Retrieval.Singapore,Singapore,2008: 627-634
[13]  Chou T C,Chen M C.Using Incremental PLSA for Threshold Resilient Online Event Analysis.IEEE Trans on Knowledge and Data Engineering,2008,20(3): 289-299
[14]  Chien J T,Wu M S.Adaptive Bayesian Latent Semantic Analysis.IEEE Trans on Audio,Speech and Language Processing,2008,16(1): 198-207
[15]  Fu Zhenyong,Lu Hongtao,Li Wenbin.Incremental Visual Objects Clustering with the Growing Vocabulary Tree.Multimedia Tools and Applications,2010,13(2): 1-18

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133