全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于柔性特征优化的目标稳健跟踪

, PP. 332-338

Keywords: 目标跟踪,陡峭因子,特征融合,粒子滤波

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对单一特征空间不足以对动态时变环境中跟踪目标进行准确表达的缺点,提出一种基于柔性加权特征的ParticleFilter目标跟踪算法。首先引入“陡峭因子”这一概念对不同特征的跟踪鉴别性能进行客观评估,然后参照当前不同特征的可跟踪性能以加权组合的方式自适应生成当前最优特征,最后将生成的最优特征嵌入到ParticleFilter跟踪构架中完成目标跟踪任务。该算法具备较高的柔性可对任意采用直方图表达的特征进行自适应融合。不同的视频序列实验表明该算法可动态地对异类特征进行有效融合,对复杂场景下的目标进行稳健跟踪。

References

[1]  Yilmaz A,Javed O,Shah M.Object Tracking: A Survey.ACM Computing Surveys,2006,38(4): 1-45
[2]  Wang H,Suter D,Schindler K,et al.Adaptive Object Tracking Based on an Effective Appearance Filter.IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(9): 1661-1667
[3]  Avidan S.Ensemble Tracking.IEEE Trans on Pattern Analysis andMachine Intelligence,2007,29 (2): 261-271
[4]  Li Shuxiao,Chang Hongxing,Zhu Chengfei.Adaptive Pyramid Mean Shift for Global Real-Time Visual Tracking.Image and Vision Computing,2010,28(3): 424-437
[5]  Liu Hong,Yu Ze,Zha Hongbin,et al.Robust Human Tracking Based on Multi-Cue Integration and Mean-Shift.Pattern Recognition Letters,2009,30(9): 827-837
[6]  Yu Dan,Wei Wei,Zhang Yuanhui.Mean Shift Tracking Algorithm Based on Multi-Feature Space.Pattern Recognition and Artificial Intelligence,2009,22(4): 666-672 (in Chinese)(虞 旦,韦 巍,张远辉.基于多特征空间的均值漂移算法.模式识别与人工智能,2009,22(4): 666-672)
[7]  Li P,Chaumette F.Image Cues Fusion for Object Tracking Based on Particle Filter // Proc of the 3rd International Workshop on Articulated Motion and Deformable Object.Palma de Mallorca,Spain,2004: 99-107
[8]  Wang H,Suter D.Efficient Visual Tracking by Probabilistic Fusion of Multiple Cues // Proc of the 18th International Conference on Pattern Recognition.Hong Kong,China,2006,IV: 892-895
[9]  Triesch J,Malsburg C.Democratic Integration: Self-Organized Integration of Adaptive Cues.Neural Computation,2001,13(9): 2049-2074
[10]  Spengler M,Schiele B.Towards Robust Multi-Cue Integration for Visual Tracking.Machine Vision and Applications,2003,14(1): 50-58
[11]  Shen C,Hengel A,Dick A.Probabilistic Multiple Cue Integration for Particle Filter Based Tracking // Proc of the 7th International Conference on Digital Image Computing: Techniques and Applications,Sydney,Australia,2003: 399-408
[12]  Pérez P,Vermaak J,Blake A.Data Fusion for Visual Tracking with Particles.Proc of the IEEE,2004,92(3): 495-513
[13]  Comaniciu D,Ramesh V,Meer P.Kernel-Based Object Tracking.IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(5): 564-577
[14]  Nummiaro K,Koller-Meier E,Gool L V.An Adaptive Color-Based Particle Filter.Image and Vision Computing,2003,21(1): 99-110
[15]  Ning Jifeng,Zhang Lei,Zhang D,et al.Robust Mean Shift Tracking with Corrected Background-Weighted Histogram[EB/OL].[2011-04-10].http://www4.comp.polyu.edu.hk/~cslzhang/paper/IET_CV_2010.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133