全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于连通分量的文本区域定位方法

, PP. 325-331

Keywords: 文本定位,Adaboost,K-means聚类,文档图像识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

文本区域定位对复杂背景图像中的字符识别和检索具有重要意义。已有方法取得高的定位准确率和召回率,但效率较低,难以应用于实际的系统中。文中提出一种基于连通分量过滤和K-means聚类的文本区域定位方法。该方法首先对图像进行自适应分割,对字符颜色层提取连通分量。然后提取连通分量的特征,并用Adaboost分类器过滤非字符连通分量。最后,对候选的字符连通分量根据其位置和颜色层进行K-means聚类来定位文本区域。实验结果显示该方法具有与当前方法相当的准确率和召回率,同时具有较低的计算复杂度。

References

[1]  Kim I K,Keechul J,Jin H.Texture-Based Approach for Text Detection in Images Using Support Vector Machines and Continuously Adaptive Mean Shift Algorithm.IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(12):1631-1639
[2]  Chen Datong,Bourlard H,Thiran J P.Text Identification in Complex Background Using SVM // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Kauai,USA,2001,II: 621-626
[3]  Hanif S M,Prevost L.Text Detection and Localization in Complex Scene Images Using Constrained AdaBoost Algorithm // Proc of the International Conference on Document Analysis and Recognition.Catalonia,Spain,2009,I: 1-5
[4]  Wanga K,Kangasb J A.Character Location in Scene Images from Digital Camera.Pattern Recognition,2003,36(10): 87-99
[5]  Zhong Y,Karu K,Jain A K.Locating Text in Complex Color Images.Pattern Recognition,1995,28(10): 1523-1536
[6]  Lucas Simon M.ICDAR 2005 Text Locating Competition Results // Proc of the International Conference on Document Analysis and Recognition.Seoul,Korea,2005,I: 80-84
[7]  Zhu Kaihua,Qi Feihu,Jiang Renjie,et al.Using Adaboost to Detect and Segment Characters from Natural Scenes // Proc of the 1st International Workshop on Camera-Based Document Analysis and Recognition.Seoul,Korea,2005: 52-59
[8]  Richard D O,Hart P E,Stork D G.Pattern Classification.2nd Edition.New York,USA: Wiley,2000

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133