Han Jiawei,Kamber M.Data Mining: Concepts and Techniques.2nd Edition.Singapore,Singapore: Elsevier,2006
[2]
Wang Haixun,Fan Wei,Yu P S,et al.Mining Concept-Drifting Data Streams Using Ensemble Classifiers // Proc of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Washington,USA,2003: 226-235
[3]
Aggarwal C.Data Streams: Models and Algorithms.Berlin,Germany: Springer,2007
[4]
Gehrke J,Ganti V,Ramakrishnan R,et al.Boat-Optimistic Decision Tree Construction // Proc of the ACM SIGMOD International Conference on Management of Data.Philadelphia,USA,1999: 169-180
[5]
Domingos P,Hulten G.Mining High-Speed Data Streams // Proc of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Boston,USA,2000: 71–80
[6]
Hulten G,Spencer L,Domingos P.Mining Time-Changing Data Streams // Proc of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco,USA,2001: 97-106
[7]
Scholz M,Klinkenberg R.An Ensemble Classifier for Drifting Concepts // Proc of the 2nd International Workshop on Knowledge Discovery in Data Streams.Portugal,Porto,2005: 53-64
[8]
Aggarwal C C,Han J,Wang Jianyong,et al.A Framework for On-Demand Classification of Evolving Data Streams.IEEE Trans on Knowledge and Data Engineering,2006,18(5): 577-589
[9]
Masud M M,Gao Jing,Khan L,et al.A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data // Proc of the 8th International Conference on Data Mining.Pisa,Italy,2008: 929-934
[10]
Bifet A,Holmes G,Pfahringer B,et al.New Ensemble Methods for Evolving Data Streams // Proc of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Ming.Paris,France,2009: 139-148
[11]
Tumer K,Ghosh J.Error Correlation and Error Reduction in Ensemble Classifiers.Connection Science,1996,18(3): 385-403
[12]
Chapelle O,Schoelkopf B,Zien A.Semi-Supervised Learning.Cambridge,USA: MIT Press,2006
[13]
Simon G J,Kumar V,Zhang Zhili.Semi-Supervised Approach to Rapid and Reliable Labeling of Large Data Sets // Proc of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Las Vegas,USA,2008: 641-649
[14]
Tsai C,Chiu C.Developing a Feature Weight Self-Adjustment Mechanism for a K-Means Clustering Algorithm.Computational Statistics and Data Analysis,2008,52(10): 4658-4672