全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于混合差异度控制的基因表达式编程

, PP. 186-194

Keywords: 基因表达式编程(GEP),局部极小,种群的差异度,敌手理论,融合种群差异度

Full-Text   Cite this paper   Add to My Lib

Abstract:

基因表达式编程(GEP)是一种进化算法,存在局部极小问题,解决此问题的一般方法是保持进化过程中种群的差异度。为了保证进化过程中种群的差异度,文中提出一种融合种群空间和样本空间的种群差异度度量方法。并基于此融合种群差异度度量方法,提出差异控制的GEP进化算法。同时在初始种群生成时,针对GEP结构的特殊性,将敌手理论应用于GEP种群初始化。实验结果表明文中算法能较有效避免过早陷入局部极小。

References

[1]  Diaz-Gomez P A,Hougen D F.Empirical Study: Initial Population Diversity and Genetic Algorithm Performance // Proc of the International Conference on Artificial Intelligence and Pattern Recognition.Orlando,USA,2007: 334-341
[2]  Diaz-Gomez P A,Hougen D F.Initial Population for Genetic Algorithms: A Metric Approach // Proc of the International Conference on Genetic and Evolutionary Methods.Las Vegas,USA,2007: 43-49
[3]  Hu Jianjun,Tang Changjie,Duan Lei,et al.The Strategy for Diversifying Initial Population of Gene Expression Programming.Chinese Journal of Computers,2007,30(2): 305-310 (in Chinese)(胡建军,唐常杰,段 磊,等.基因表达式编程初始种群的多样化策略.计算机学报,2007,30(2): 305-310)
[4]  Ventresca M,Tizhoosh H R.A Diversity Maintaining Population-Based Incremental Learning Algorithm.Information Sciences: An International Journal,2008: 178(21): 4038-4056
[5]  Diaz-Gomez P A,Hougen D F.Initial Population Diversity Does Not Influence Performance // Proc of the International Conference on Genetic and Evolutionary Methods.Las Vegas,USA,2008: 55-63
[6]  Nsakanda A L,Price W L,Diaby M,et al.Ensuring Population Diversity in Genetic Algorithms: A Technical Note with Application to the Cell Formation Problem.European Journal of Operational Research,2007,178(2): 634-638
[7]  Li Fan,Xu Zhangyan.Measurement of Population Diversity in Genetic Algorithms.Journal of Huazhong University of Science and Technology,1999,27(7): 3-5 (in Chinese)(李 凡,徐章艳.遗传算法种群多样性的度量.华中理工大学学报,1999,27(7): 3-5)
[8]  Zhang Xiaohui,Dai Guanzhong,Xu Naiping.Study on Diversity of Population in Genetic Algorithms.Control Theory and Applications,1998,15(1): 17-20 (in Chinese)(张晓缋,戴冠中,徐乃平.遗传算法种群多样性的分析研究.控制理论与应用,1998,15(1): 17-20)
[9]  Liu Qihong,Tang Changjie,Hu Jianjun,et al.Gene Expression Programming Based on Diversity-Guided Grading Evolution.Journal of Sichuan University: Engineering Science Edition,2006,38(6): 108-113 (in Chinese)(刘齐宏,唐常杰,胡建军,等.多样性制导分段进化的基因表达式编程.四川大学学报:工程科学版,2006,38(6): 108-113)
[10]  Park T,Ryu K R.A Dual-Population Genetic Algorithm for Adaptive Diversity Control.IEEE Trans on Evolutionary Computation,2010,14(6): 865-884
[11]  Zhang Chengwen,Su Sen,Chen Junliang.DiGA: Population Diversity Handling Genetic Algorithm for QoS-Aware Web Services Selection.Computer Communications,2007,30(5): 1082-1090
[12]  Shimodaira,H.A Diversity-Control-Oriented Genetic Algorithm (DCGA): Performance in Function Optimization // Proc of the Congress on Evolutionary Computation.Seoul,South Korea,2001,1: 44-51
[13]  Hu Jianjun,Tang Changjie,Peng Jing,et al.VPS-GEP: Skipping from Local Optimization Fast Algorithm.Journal of Sichuan University: Engineering Science Edition,2007,39(1): 128-133 (in Chinese)(胡建军,唐常杰,彭 京,等.快速跳出局部最优的VPS-GEP算法.四川大学学报:工程科学版,2007,39(1): 128-133)
[14]  Chang P C,Huang W H,Ting C J.Dynamic Diversity Control in Genetic Algorithm for Mining Unsearched Solution Space in TSP Problems.Expert Systems with Application,2010,37(3): 1863-1878
[15]  Vinicius T D O,Renato T.Diversity Control in Genetic Algorithms for Protein Structure Prediction [EB/OL].[2010-10-23].https: // lrias.kuleuven.be/bitstream/123456789/274491/1/st03_02.pdf
[16]  Li Taiyong,Tang Changjie,Wu Jiang,et al.Adaptive Population Diversity Tuning Algorithm for Gene Expression Programming.Journal of University of Electronic Science and Technology of China,2010,39(2): 279-283 (in Chinese)(李太勇,唐常杰,吴 江,等.基因表达式编程种群多样性自适应调控算法.电子科技大学学报,2010,39(2): 279-283)
[17]  Hu Jianjun,Wu Xiaoyun.Superior Population Strategy in Gene Expression Programming.Journal of Chinese Computer System,2009,8(8): 1661-1662 (in Chinese)(胡建军,吴晓云.基因表达式编程中的优势种群产生策略.小型微型计算机系统,2009,8(8): 1661-1662)
[18]  Zhong Yixiao,Tang Changjie,Chen Yu,et al.Improve KDD Efficiency of Gene Expression Programming by Backtracking Strategy.Journal of Sichuan University: Natural Science Edition,2006,43(2): 299-304 (in Chinese)(钟义啸,唐常杰,陈 宇,等.提高基因表达式编程发现知识效率的回溯策略.四川大学学报:自然科学版,2006,43(2): 299-304)
[19]  Chen Hao,Li Ming,Zhang Ke.New Multi-Objectivization Evolutionary Algorithm Based on Individual Diversity.Control and Decision,2010,25(9): 1342-1348(in Chinese)(陈 昊,黎 明,张 可.一种基于多样性度量的多目标化进化算法.控制与决策,2010,25(9): 1342-1348)
[20]  Du Xin,Ding Lixin.About the Convergence Rates of a Class of Gene Expression Programming.Science China: Information Sciences,2010,40(1): 41-53 (in Chinese)(杜 欣,丁立新.一类基因表达式程序设计的收敛速度.中国科学:信息科学,2010,40(1): 41-53)
[21]  Yuan Changan,Tang Changjie,Zuo Jie,et al.Function Mining Based on Gene Expression Programming-Convergency Analysis and Remnant-Guided Evolution Algorithm.Journal of Sichuan University: Engineering Science Edition,2004,36(6): 100-105 (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133