全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于树型依赖结构的多标记分类算法

, PP. 573-580

Keywords: 分类,多标记实例,多标记学习,依赖关系

Full-Text   Cite this paper   Add to My Lib

Abstract:

在多标记学习中,发现与利用各标记之间的依赖关系能提高学习算法的性能。文中基于分类器链模型提出一种针对性的多标记分类算法。该算法首先量化标记间的依赖程度,并构建标记之间明确的树型依赖结构,从而可减弱分类器链算法中依赖关系的随机性,并将线性依赖关系泛化成树型依赖关系。为充分利用标记间的相互依赖关系,文中采用集成学习技术进一步学习并集成多个不同的标记树型依赖结构。实验结果表明,同分类器链等算法相比,该算法经过集成学习后有更好的分类性能,其能更有效地学习标记间的依赖关系。

References

[1]  Cheng W,Hullermeier E.Combining Instance-Based Learning and Logistic Regression for Multilabel Classification.Machine Learning,2009,76( 2/3): 211-225
[2]  Tsoumakas G,Katakis I,Vlahavas I.Mining Multi-Label Data // Oded M,Lior R,eds.Data Mining and Knowledge Discovery Handbook.New York,USA: Springer,2010: 667-685
[3]  Read J.Multi-Label Classification Using Ensembles of Pruned Sets // Proc of the IEEE International Conference on Data Mining.Pisa,Italy,2008: 995-1000
[4]  Dembczynski K,Cheng W,Hullermeier E.Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains // Proc of the 27th International Conference on Machine Learning.Haifa,Israel,2010: 279-286
[5]  Zhang Minling,Zhang Kun.Multi-Label Learning by Exploiting Label Dependency // Proc of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Washington,USA,2010: 999-1008
[6]  Read J,Pfahringer B,Holmes G,et al.Classifier Chains for Multi-Label Classification // Proc of the European Conference on Machine Learning and Knowledge Discovery in Databases.Bled,Slovenia,2009: 254-269
[7]  Schapire R E,Singer Y.Boostexter: A Boosting-Based System for Text Categorization.Machine Learning,2000,39(2/3): 135-168
[8]  Clare A,King R D.Knowledge Discovery in Multi-Label Phenotype Data // Proc of the 5th European Conference on Principles of Data Mining and Knowledge Discovery.Freiburg,Germany,2001: 42-53
[9]  Zhang Minling,Zhou Zhihua.ML-KNN: A Lazy Learning Approach to Multi-Label Learning.Pattern Recognition,2007,40(7): 2038-2048
[10]  McCallum A K.Multi-Label Text Classification with a Mixture Model Trained by EM [EB/OL].[1999-12-10].http: // www.kyriakides.net/CBCL/references/Papers/mccallum99 multilabel.pdf
[11]  Elisseeff A,Weston J.A Kernel Method for Multi-Labelled Classification // Oietterich T G,Becker S,Ghahramani,eds.Advances in Neural Information Processing Systems.Cambridge USA: MIT Press,2002,XIV: 681-687
[12]  Thabtah F A,Cowling P,Peng Y.MMAC: A New Multi-Class,Multi-Label Associative Classification Approach // Proc of the 4th International Conference on Data Mining.Borighton,UK,2004: 217-224
[13]  Veloso A,Wagner M J,Goncalves M,et al.Multi-Label Lazy Associative Classification // Proc of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases.Warsaw,Poland,2007: 605-612
[14]  Chen Weizhu,Yan Jun,Zhang Benyu,et al.Document Transformation for Multi-Label Feature Selection in Text Categorization // Proc of the 7th IEEE International Conference on Data Mining.Omaha,USA,2007: 451-456
[15]  Tsoumakas G,Vlahavas I.Random k-Labelsets: An Ensemble Method for Multilabel Classification // Proc of the 18th European Conference on Machine Learning.Warsaw,Poland,2007: 406-417
[16]  Boutell M,Luo J,Shen X,et al.Learning Multi-Label Scene Classification.Pattern Recognition,2004,37(9): 1757-1771
[17]  Hullermeier E,Furnkranz J,Cheng W,et al.Label Ranking by Learning Pairwise Preferences.Artificial Intelligence,2008,172(16/17): 1897-1916
[18]  Furnkranz J,Hullermeier E,Mencia E,et al.Multilabel Classification via Calibrated Label Ranking.Machine Learning,2008,73(2): 133-153
[19]  Gaag L,Waal P.Multi-Dimensional Bayesian Network Classifiers // Proc of the 3rd European Workshop on Probabilistic Graphical Models.Prague,Czech Republic,2006: 107-114
[20]  Battiti R.Using Mutual Information for Selecting Features in Supervised Neural Net Learning.IEEE Trans on Neural Networks,1994,5(4): 537-550
[21]  Guo B,Nixon M S.Gait Feature Subset Selection by Mutual Information.IEEE Trans on Systems,Man and Cybernetics,2009,39(1): 36-46
[22]  Witten I,Frank E.Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations.2nd Edition.San Francisco,USA: Morgan Kaufmann Publishers,2000

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133