Cheng W,Hullermeier E.Combining Instance-Based Learning and Logistic Regression for Multilabel Classification.Machine Learning,2009,76( 2/3): 211-225
[2]
Tsoumakas G,Katakis I,Vlahavas I.Mining Multi-Label Data // Oded M,Lior R,eds.Data Mining and Knowledge Discovery Handbook.New York,USA: Springer,2010: 667-685
[3]
Read J.Multi-Label Classification Using Ensembles of Pruned Sets // Proc of the IEEE International Conference on Data Mining.Pisa,Italy,2008: 995-1000
[4]
Dembczynski K,Cheng W,Hullermeier E.Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains // Proc of the 27th International Conference on Machine Learning.Haifa,Israel,2010: 279-286
[5]
Zhang Minling,Zhang Kun.Multi-Label Learning by Exploiting Label Dependency // Proc of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Washington,USA,2010: 999-1008
[6]
Read J,Pfahringer B,Holmes G,et al.Classifier Chains for Multi-Label Classification // Proc of the European Conference on Machine Learning and Knowledge Discovery in Databases.Bled,Slovenia,2009: 254-269
[7]
Schapire R E,Singer Y.Boostexter: A Boosting-Based System for Text Categorization.Machine Learning,2000,39(2/3): 135-168
[8]
Clare A,King R D.Knowledge Discovery in Multi-Label Phenotype Data // Proc of the 5th European Conference on Principles of Data Mining and Knowledge Discovery.Freiburg,Germany,2001: 42-53
[9]
Zhang Minling,Zhou Zhihua.ML-KNN: A Lazy Learning Approach to Multi-Label Learning.Pattern Recognition,2007,40(7): 2038-2048
[10]
McCallum A K.Multi-Label Text Classification with a Mixture Model Trained by EM [EB/OL].[1999-12-10].http: // www.kyriakides.net/CBCL/references/Papers/mccallum99 multilabel.pdf
[11]
Elisseeff A,Weston J.A Kernel Method for Multi-Labelled Classification // Oietterich T G,Becker S,Ghahramani,eds.Advances in Neural Information Processing Systems.Cambridge USA: MIT Press,2002,XIV: 681-687
[12]
Thabtah F A,Cowling P,Peng Y.MMAC: A New Multi-Class,Multi-Label Associative Classification Approach // Proc of the 4th International Conference on Data Mining.Borighton,UK,2004: 217-224
[13]
Veloso A,Wagner M J,Goncalves M,et al.Multi-Label Lazy Associative Classification // Proc of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases.Warsaw,Poland,2007: 605-612
[14]
Chen Weizhu,Yan Jun,Zhang Benyu,et al.Document Transformation for Multi-Label Feature Selection in Text Categorization // Proc of the 7th IEEE International Conference on Data Mining.Omaha,USA,2007: 451-456
[15]
Tsoumakas G,Vlahavas I.Random k-Labelsets: An Ensemble Method for Multilabel Classification // Proc of the 18th European Conference on Machine Learning.Warsaw,Poland,2007: 406-417
[16]
Boutell M,Luo J,Shen X,et al.Learning Multi-Label Scene Classification.Pattern Recognition,2004,37(9): 1757-1771
Gaag L,Waal P.Multi-Dimensional Bayesian Network Classifiers // Proc of the 3rd European Workshop on Probabilistic Graphical Models.Prague,Czech Republic,2006: 107-114
[20]
Battiti R.Using Mutual Information for Selecting Features in Supervised Neural Net Learning.IEEE Trans on Neural Networks,1994,5(4): 537-550
[21]
Guo B,Nixon M S.Gait Feature Subset Selection by Mutual Information.IEEE Trans on Systems,Man and Cybernetics,2009,39(1): 36-46
[22]
Witten I,Frank E.Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations.2nd Edition.San Francisco,USA: Morgan Kaufmann Publishers,2000