全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

主动协同半监督粗糙集分类模型

, PP. 745-754

Keywords: 粗糙集,差别矩阵,半监督约简,主动学习,协同训练

Full-Text   Cite this paper   Add to My Lib

Abstract:

粗糙集理论是一种有监督学习模型,一般需要适量有标记的数据来训练分类器。但现实一些问题往往存在大量无标记的数据,而有标记数据由于标记代价过大较为稀少。文中结合主动学习和协同训练理论,提出一种可有效利用无标记数据提升分类性能的半监督粗糙集模型。该模型利用半监督属性约简算法提取两个差异性较大的约简构造基分类器,然后基于主动学习思想在无标记数据中选择两分类器分歧较大的样本进行人工标注,并将更新后的分类器交互协同学习。UCI数据集实验对比分析表明,该模型能明显提高分类学习性能,甚至能达到数据集的最优值。

References

[1]  Pawlak Z.Rough Sets.International Journal of Computer and Information Science,1982,11(5): 341-356
[2]  Pawlak Z.Rough Sets: Theoretical Aspects of Reasoning about Data.Dordrecht,Netherlands: Kluwer Academic Publishers,1991
[3]  Liu Qing.Rough Sets and Rough Reasoning.Beijing,China: Science Press,2001 (in Chinese)(刘 清.Rough集及Rough推理.北京:科学出版社,2001)
[4]  Wang Guoyin.Rough Sets Theory and Knowledge Acquisition.Xi′an,China: Xi′an Jiaotong University Press,2001 (in Chinese)(王国胤.Rough 集理论与知识获取.西安:西安交通大学出版社,2001)
[5]  Zhang Wenxiu,Wu Weizhi,Liang Jiye,et al.Rough Sets Theory and Methods.Beijing,China: Science Press,2003 (in Chinese)(张文修,吴伟志,梁吉业,等.粗糙集理论与方法.北京:科学出版社,2003)
[6]  Liang Jiye,Li Deyu.Uncertainty and Knowledge Acquisition in Information System.Beijing,China: Science Press,2005 (in Chinese)(梁吉业,李德玉.信息系统中的不确定性与知识获取.北京:科学出版社,2005)
[7]  Miao Duoqian,Li Daoguo.Rough Sets Theory,Algorithms and Applications.Beijing,China: Tsinghua University Press,2008 (in Chinese)(苗夺谦,李道国.粗糙集理论,算法与应用.北京:清华大学出版社,2008)
[8]  Duan Qiguo,Miao Duoqian.Jin Kaimin.A Rough Set Approach to Classifying Web Page without Negative Examples // Proc of the 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining.Nanjing,China,2007: 481-488
[9]  Lingras P,Chen Min,Miao Duoqian.Semi-Supervised Rough Cost/Benefit Decisions.Fundamenta Informaticae,2009,94(2): 1-12
[10]  Gu X P,Tso S K.Applying Rough-Set Concept to Neural-Network-Based Transient-Stability Classification of Power Systems // Proc of the 5th International Conference on Advances in Power System Control,Operation and Management.Hong Kong,China,2000: 400-404
[11]  Wang Sheng,Wang Xue,Bi Daowei,et al.Collaborative Statistical Learning with Rough Feature Reduction for Visual Target Classification // Proc of the 5th International Joint Conference on Neural Networks.Hong Kong,China,2008: 1151-1156
[12]  Settles B.Active Learning Literature Survey.Computer Sciences Technical Report,1648.Madison,USA: University of Wisconsin-Madison,2009
[13]  Long Jun,Yin Jianping,Zhu En,et al.A Survey of Active Learning.Journal of Computer Research and Development,2008,45(Z1): 300-304 (in Chinese)(龙 军,殷建平,祝 恩,等.主动学习研究综述.计算机研究与发展,2008,45(Z1): 300-304)
[14]  Blum A,Mitchell T M.Combining Labeled and Unlabeled Data with Co-Training // Proc of the 11th Annual Conference on Computational Learning Theory.Madison,USA,1998: 92-100
[15]  Zhou Zhihua,Wang Jue.Machine Learning and Its Application.Beijing,China: Tsinghua University Press,2007 (in Chinese)(周志华,王 珏.机器学习及其应用.北京:清华大学出版社,2007)
[16]  Chapelle O,Schlkopf B,Zien A.Semi-Supervised Learning.Cambridge,USA: MIT Press,2006
[17]  Zhu Xiaojin.Semi-Supervised Learning Literature Survey (Revised Edition).Technical Report,1530.Madison,USA: University of Wisconsin-Madison,2008
[18]  Liang Jiye,Gao Jiawei,Chang Yu.The Research and Advances on Semi-Supervised Learning.Journal of Shanxi University: Nature Science Edition,2009,32(4): 528-534 (in Chinese)(梁吉业,高嘉伟,常 瑜.半监督学习研究进展.山西大学学报: 自然科学版,2009,32(4): 528-534)
[19]  Nigam K,Ghani R.Analyzing the Effectiveness and Applicability of Co-Training // Proc of the 9th ACM International Conference on Information and Knowledge Management.McLean,USA,2000: 86-93
[20]  Goldman S,Zhou Yan.Enhancing Supervised Learning with Unlabeled Data // Proc of the 17th International Conference on Machine Learning.San Francisco,USA,2000: 327-334
[21]  Zhou Zhihua,Li Ming.Tri-Training: Exploiting Unlabeled Data Using Three Classifiers.IEEE Trans on Knowledge and Data Engineering,2005,17(11): 1529-1541
[22]  Li Ming,Zhou Zhihua.Improve Computer-Aided Diagnosis with Machine Learning Techniques Using Undiagnosed Samples.IEEE Trans on Systems,Man and Cybernetics,2007,37(6): 1088-1098
[23]  Balcan M F,Blum A,Yang K.Co-Training and Expansion: Towards Bridging Theory and Practice // Proc of the 19th Annual Conference on Neural Information Processing Systems.Whistler,Canada,2005: 89-96
[24]  Wang Wei,Zhou Zhihua.Analyzing Co-Training Style Algorithms // Proc of the 18th European Conference on Machine Learning.Warsaw,Poland,2007: 454-465
[25]  Muslea I,Minton S,Knoblock C.Selective Sampling with Redundant Views // Proc of the 17th National Conference on Artificial Intelligence.Austin,USA,2000: 621-626

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133