全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于得分域多维特征分类器的声纹密码系统

, PP. 755-761

Keywords: 声纹密码,混合高斯模型-统一背景模型(GMM-UBM),平均似然比,二类分类器

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对不同类型数据对目标发音人区分能力不同的现象,在传统系统基础上提出利用UBM模型对测试数据进行分类,使用分类后的似然比得分形成多维特征,在此基础上利用SVM分类器进行声纹密码确认。该方法把传统的似然比检验策略转换成多维特征空间上的二类分类问题。测试与注册数据同信道情况时,在4种手机数据集上,文中系统相对文本相关GMM-UBM声纹密码系统等错误率分别下降41。25%、33。33%、37。49%和26。03%,在交叉信道上系统性能也获得改善。

References

[1]  Ramasubramanian V,Das A,Kumar V P.Text-Dependent Speaker-Recognition Using One-Pass Dynamic Programming Algorithm // Proc of the IEEE International Conference on Acoustics,Speech and Signal Processing.Toulouse,France,2006: 901-904
[2]  Furtuna T F.Dynamic Programming Algorithms in Speech Recognition.Informatica Economica Journal,2008,2(46): 94-99
[3]  Reynolds D A,Rose R C.Robust Text-Independent Speaker Identification Using Gaussian Mixture Speaker Models.IEEE Trans on Speech and Audio Processing,1995,3(1): 72-83
[4]  Subramanyal A,Zheng Z,Surendran A C,et al.A Generative-Discriminative Framework Using Ensemble Methods for Text-Dependent Speaker Verification // Proc of the IEEE International Conference on Acoustics,Speech,and Signal Processing.Honolulu,USA,2007: 225-228
[5]  Campbell W M,Campbell J P,Reynolds D A,et al.Support Vector Machines for Speaker and Language Recognition.Computer Speech and Language,2006,20(2/3): 210-229
[6]  Campbell W M,Sturim D E,Reynolds D A.Support Vector Machines Using GMM Supervectors for Speaker Verification.IEEE Signal Processing Letters,2006,13(5): 308-311
[7]  Vogt R,Baker B,Sridharan S.Factor Analysis Subspace Estimation for Speaker Verification with Short Utterances // Proc of the Interspeech 2008.Brisbane,Australia,2008: 853-856
[8]  Kenny P.Joint Factor Analysis of Speaker and Session Variability: Theory and Algorithms.Technical Report,CRIM-06/08-13.Montreal,Canada: CRIM,2006
[9]  Kenny P,Mihoubi M,Dumouchel P.New MAP Estimators for Speaker Recognition // Proc of the Eurospeech 2003.Geneva,Switzerland,2003: 2964-2967
[10]  Kenny P,Boulianne G,Dumouchel P.Eigenvoice Modeling with Sparse Training Data.IEEE Trans on Speech and Audio Processing,2005,13(3): 345-354
[11]  Nello C,Jhon S T.Support Vector Machines.Cambridge,UK: Cambridge University Press,2000
[12]  Kajarekar S.Phone-Based Cepstral Polynomial SVM System for Speaker Recognition // Proc of the Interspeech 2008.Brisbane,Australia,2008: 845-848
[13]  Campbell J P.Speaker Recognition: A Tutorial.Proc of IEEE,1997,85(9): 1437-1462
[14]  Naik J M.Speaker Verification: A Tutorial.IEEE Communications Magazine,1990,28(1): 42-48
[15]  Gauvain J L,Lee C H.Maximum a Posteriori Estimation for Multivariate Gaussian Mixture Observations of Markov Chains.IEEE Trans on Speech and Audio Processing,1994,2(2): 291-298
[16]  Moreno P J,Ho P P,Vasconcelos N.A Kullback-Leibler Divergence Based Kernel for SVM Classification in Multimedia Applications // Thrun S,Saul L,Schlkopf B,eds.Advances in Neural Information Processing Systems.Cambridge,USA: MIT Press,2004,XIV: 1385-1393
[17]  Hermansky H,Morgan N,Bayya A,et al.RASTA-PLP Speech Analysis Technique // Proc of the IEEE International Conference on Acoustics,Speech and Signal Processing.San Francisco,USA,1992: 121-124
[18]  Lamel L,Rabiner L,Rosenberg A,et al.An Improved Endpoint Detector for Isolated Word Recognition.IEEE Trans on Acoustics,Speech and Signal Processing,1981,29(4): 777-785
[19]  Furui S.Cepstral Analysis Technique for Automatic Speaker Verification.IEEE Trans on Acoustics,Speech and Signal Processing,1981,29(2): 254-272
[20]  Xiang B U,Chaudhari V,Navratil J,et al.Short-Time Gaussianization for Robust Speaker Verification // Proc of the IEEE International Conference on Acoustics,Speech and Signal Processing.Orlando,USA,2002: 681-684
[21]  Fukada T,Tokuda K,Kobayashi T,et al.An Adaptive Algorithm for Mel-Cepstral Analysis of Speech // Proc of the IEEE International Conference on Acoustics,Speech and Signal Processing.San Francisco,USA,1992: 137-140
[22]  Collobert R,Bengio S.SVMTorch: Support Vector Machines for Large-Scale Regression Problems.Journal of Machine Learning Research,2001,1: 143-160

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133