全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于集成学习和分层结构的多分类算法*

DOI: 10.16451/j.cnki.issn1003-6059.201509002, PP. 781-787

Keywords: 多分类,集成学习,层次分类器

Full-Text   Cite this paper   Add to My Lib

Abstract:

分类是数据挖掘、模式识别等领域的重要研究内容.文中提出基于集成学习和分层结构的多分类算法.首先依据问题的类别层分解问题,定义层次分类器的分层结构,然后在分层结构的基础上通过集成学习方法集成多个弱分类器以构成分类过程.在CCDM2014数据挖掘竞赛中,文中算法在平均精度和F1-score等多项指标上均取得最高成绩,证明该算法在分类问题上的可行性.

References

[1]  Cortes C, Vapnik V. Support-Vector Networks. Machine Learning, 1995, 20(3): 273-297
[2]  Safavian S R, Landgrebe D. A Survey of Decision Tree Classifier Methodology. IEEE Trans on Systems, Man, and Cybernetics, 1991, 21(3): 660-674
[3]  Caruana R, Niculescu-Mizil A, Crew G, et al. Ensemble Selection from Libraries of Models // Proc of the 21st International Conference on Machine Learning. Banff, Canada, 2004: 137-144
[4]  Zhou Z H, Wu J X, Tang W. Ensembling Neural Networks: Many Could Be Better Than All. Artificial Intelligence, 2002, 137(1/2): 239-263
[5]  Zhang C X, Zhang J S. A Survey of Selective Ensemble Learning Algorithm. Chinese Journal of Computers, 2011, 34(8): 1399-1410 (in Chinese) (张春霞,张讲社.选择性集成学习算法综述.计算机学报, 2011, 34(8): 1399-1410)
[6]  Breiman L. Bagging Predictors. Machine Learning, 1996, 24(2): 123-140
[7]  Freund Y, Schapire R E. A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting. Journal of Computer and System Sciences, 1997, 55(1): 119-139
[8]  Kearns M J, Valiant L G. Learning Boolean Formulae or Finite Automata is as Hard as Factoring. Technical Report, TR-14-88. Cambridge, USA: Harvard University, 1988
[9]  Breiman L. Random Forests. Machine Learning, 2001, 45(1): 5-32
[10]  Friedman J H. Stochastic Gradient Boosting. Computational Statistics & Data Analysis, 2002, 38(4): 367-378
[11]  Friedman J H. Greedy Function Approximation: A Gradient Boo-sting Machine. The Annals of Statistics, 2001, 29(5): 1189-1232
[12]  Wolpert D H. The Lack of a Priori Distinctions between Learning Algorithms. Neural Computation, 1996, 8(7): 1341-1390
[13]  Dietterich T G. Ensemble Methods in Machine Learning // Proc of the 1st International Workshop on Multiple Classifier Systems. Cagliari, Italy, 2000: 1-15
[14]  Dietterich T G, Bakiri G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 1995, 2: 263-286
[15]  Tsoumakas G, Katakis I, Vlahavas I. Mining Multi-label Data // Maimon O, Rokach L, eds. Data Mining and Knowledge Discovery Handbook. New York, USA: Springer, 2010: 667-685
[16]  Lin C, Chen W Q, Qiu C, et al. LibD3C: Ensemble Classifiers with a Clustering and Dynamic Selection Strategy. Neurocomputing, 2014, 123: 424-435
[17]  Rendle S. Factorization Machines // Proc of the 10th IEEE International Conference on Data Mining. Sydney, Australia, 2010: 995-1000
[18]  Rendle S. Factorization Machines with LibFM. ACM Trans on Intelligent Systems and Technology, 2012. DOI: 10.1145/2168752.2168771
[19]  Zhang M L, Zhou Z H. Multi-label Learning by Instance Differentiation // Proc of the 22nd AAAI Conference on Artificial Intelligence. Vancouver, Canada, 2007: 669-674

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133