全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于命题逻辑概率赋值的近似推理模式*

DOI: 10.16451/j.cnki.issn1003-6059.201509001, PP. 769-780

Keywords: 概率逻辑,概率赋值,概率真度,不可靠度,近似推理

Full-Text   Cite this paper   Add to My Lib

Abstract:

将命题逻辑的赋值域由二值{0,1}推广到给定的概率空间,引进命题公式的概率赋值,概率赋值是经典命题逻辑赋值及各种真度概念的推广.利用概率赋值引入命题公式的概率真度、不可靠度、基于独立事件赋值集的概率真度等概念,通过讨论概率真度的性质,表明概率真度在全体命题公式集F(S)上满足Kolmogorov公理.证明全部命题公式基于独立事件赋值集的真度之集在[0,1]中无孤立点,以及在命题逻辑形式推演中,一个有效推理结论的不可靠度不超过各前提的不可靠度与其必要度的乘积之和等结论.在概率赋值的基础上,引进命题公式集的a.e.结论、依概率结论、依概率真度结论等概念,讨论这些概念之间的联系,并提出两个不同类型的近似推理模式.

References

[1]  Hjek M. Metamathematics of Fuzzy Logic. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1998
[2]  Wang G J. Nonstandard Mathematical Logic and Approximate Reasoning. 2nd Edition. Beijing, China: Science Press, 2008 (in Chinese) (王国俊.非经典数理逻辑与近似推理.第2版.北京:科学出版社, 2008)
[3]  Wang P Z, Li H X. Fuzzy System Theory and Fuzzy Computer. Beijing, China: Science Press, 1996 (in Chinese) (汪培庄,李洪兴.模糊系统理论与模糊计算机.北京:科学出版社, 1996)
[4]  Artemov S N, Davoren J M, Nerode A. Modal Logics and Topological Semantics for Hybrid Systems. Technical Report, MSI97-05. Ithaca, USA: Cornell University, 1997
[5]  Aiello M, Van Benthem J, Bezhanishvili G. Reasoning about Space: The Modal Way. Journal of Logic and Computation, 2003, 13(6): 889-920
[6]  Pavelka J. On Fuzzy Logic I: Many-Valued Rules of Inference. Mathematical Logic Quarterly, 1979, 25: 45-52
[7]  Pavelka J. On Fuzzy Logic II: Enriched Residuated Lattices and Semantics of Propositional Calculi. Mathematical Logic Quarterly, 1979, 25: 119-134
[8]  Pavelka J. On Fuzzy Logic III: Semantical Completeness of Some Many-Valued Propositional Calculi. Mathematical Logic Quarterly, 1979, 25: 447-464
[9]  Ying M S. A Logic for Approximate Reasoning. The Journal of Symbolic Logic, 1994, 59(3): 830-837
[10]  Adams E W. A Primer of Probability Logic. Stanford, USA: Center for the Study of Language and Information, 1996
[11]  Nillson N J. Probability Logic. Artificial Intelligence, 1986, 28(1): 71-87
[12]  Wang G J, Hui X J. Generalization of Fundamental Theorem of Probability Logic. Acta Electronica Sinica, 2007, 35(7): 1333-1340 (in Chinese)(王国俊,惠小静.概率逻辑学基本定理的推广.电子学报, 2007, 35(7): 1333-1340)
[13]  Liu H L, Gao Q S, Yang B R. Two Levels of Equal Relations in Probabilistic Propositional Logic and Propositional Calculus. Philosophical Researches, 2009, 44(10): 113-120 (in Chinese)(刘宏岚,高庆狮,杨炳儒.概率命题逻辑中命题相等关系的两个层面与命题演算.哲学研究, 2009, 44(10): 113-120)
[14]  Liu H L, Gao Q S, Yang B R. Probabilistic Propositional Logic is the Event Semantic for Classical Formal System of Propositional Calculus. Journal of Chinese Computer Systems, 2011, 32(5): 978-982 (in Chinese)(刘宏岚,高庆狮,杨炳儒.概率命题逻辑是经典命题演算形式系统的随机事件语义.小型微型计算机系统, 2011, 32(5): 978-982)
[15]  Wang G J, Zhou H J. Quantitative Logic. Information Sciences, 2009, 179(3): 226-247
[16]  Li B J, Wang G J. Theory of Truth Degrees of Formulas in Lukasiewicz-Valued Propositional Logic and a Limit Theorem. Science China: Information Sciences, 2005, 48(6): 727-736
[17]  Wang G J, Fu L, Song J S. Theory of Truth Degrees of Propositions in Two-Valued Propositional Logic. Science in China: Series A, 2002, 45(9): 1106-1116
[18]  Li J, Wang G J. Theory of α-Truth Degrees in n-Valued Gdel Propositional Logic. Journal of Software, 2007, 18(1): 33-39 (in Chinese)(李 骏,王国俊.Gdel n值命题逻辑中命题的α-真度理论.软件学报, 2007, 18(1): 33-39)
[19]  Wang G J, Hui X J. Randomization of Classical Inference Patterns and Its Application. Science China: Information Sciences, 2007, 50(6): 867-877
[20]  Fu L, Song J S. Theory of Boolean Semantics of Classical Propositional Logic. Fuzzy Systems and Mathematics, 2007, 21(2): 46-52 (in Chinese)(傅 丽,宋建社.经典命题逻辑的Boole语义理论.模糊系统与数学, 2007, 21(2): 46-52)
[21]  Liu X L, Zhang J L. Random Truth Theory of Proposition Logic and Its Application. Pattern Recognition and Artificial Intelligence, 2013, 26(3): 231-241 (in Chinese)(刘晓玲,张家录.命题逻辑的随机真度理论及其应用.模式识别与人工智能, 2013, 26(3): 231-241)
[22]  Zhang J L, Chen X G, Zhou X D. Theory of Probability Semantics of Classical Propositional Logic and Its Application. Chinese Journal of Computers, 2014, 37(8): 1775-1785 (in Chinese)(张家录,陈雪刚,赵晓东.经典命题逻辑的概率语义及其应用.计算机学报, 2014, 37(8): 1775-1785)
[23]  Kolmogorov A N. The Foundation of the Theory of Probability. New York, USA: Chelsea Publishing Company, 1950
[24]  Bogachev V I. Measure Theory. New York, USA: Springer-Verlag, 2006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133