Martinez A M, Kak A C. PCA versus LDA. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233
[2]
Cox T F, Cox M A A. Multidimensional Scaling. London, UK: Chapman& Hall, 1994
[3]
Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500): 2319-2323
[4]
Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290(5500): 2323-2326
[5]
Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 2003, 15(6): 1373-1396
[6]
Zhang Z Y, Zha H Y. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment. Journal of Shanghai University: English Edition, 2004, 8(4): 406-424
[7]
Wu W T. The Application of Manifold Learning Algorithms in Pattern Recognition. Master Dissertation. Shanghai, China: Shanghai Jiao Tong University, 2013 (in Chinese) (吴文通.流形学习方法在模式识别中的应用研究.硕士学位论文.上海:上海交通大学, 2013)
[8]
Geng X, Zhan D C, Zhou Z H. Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Trans on Systems, Man, and Cybernetics: Cybernetics, 2005, 35(6): 1098-1107
[9]
Li Y. Building K-Edge-Connected Neighborhood Graph for Distance-Based Data Projection. Pattern Recognition Letters, 2005, 26(13): 2015-2021
[10]
Zhang Z, Chow T W S, Zhao M B. M-Isomap: Orthogonal Constrained Marginal Isomap for Nonlinear Dimensionality Reduction. IEEE Trans on Cybernetics, 2013, 43(1): 180-191
[11]
Sun W W, Halevy A, Benedetto J J, et al. UL-Isomap Based Nonlinear Dimensionality Reduction for Hyperspectral Imagery Classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89: 25-36
[12]
Vlachos M, Domeniconi C, Gunopulos D, et al. Non-linear Dimensionality Reduction Techniques for Classification and Visualization // Proc of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002: 645-651
[13]
Wei B L. Video Analysis Using Semi-supervised Manifold Lear-ning. Master Dissertation. Xi′an, China: Xidian University, 2011 (in Chinese)(魏博兰.半监督流形学习算法在视频分析中的应用.硕士学位论文.西安:西安电子科技大学, 2011)
[14]
Cheng Q C,Wang H Y,Feng Y. A Multi-class Multi-manifold Learning Algorithm Based on ISOMAP // Proc of the Chinese Conference on Pattern Recognition. Nanjing, China, 2009. DOI: 10.1109/CCPR.2009.5343987
[15]
Wu Y M, Chan K L. An Extended Isomap Algorithm for Learning Multi-class Manidold // Proc of the International Conference on Machine Learning and Cybernetics. Shanghai, China, 2004, VI: 3429-3433
[16]
Cho M,Park H. Nonlinear Dimension Reduction Using ISOMap Based on Class Information // Proc of the International Joint Conference on Neural Networks. Atlanta, USA, 2009: 566-570
[17]
de Silva V. Tenenbaum J B. Global versus Local Methods in Nonlinear Dimensionality Reduction [EB/OL].[2014-06-30].http://web.mit.edu/cocosci/Papers/nips 02-localglobal-in-press.pdf
[18]
Webb A R. Multidimensional Scaling by Iterative Majorization Using Radial Basis Functions. Pattern Recognition, 1995, 28(5): 753-759
[19]
Zhang J P, Li S Z, Wang J. Manifold Learning and Applications in Recognition // Tan Y P, Yap K H, Wang L P, eds. Intelligent Multimedia Processing with Soft Computing. Berlin, Germany: Springer-Verlag, 2004: 281-300