全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

矢量量化地标点的显式监督等距映射算法*

DOI: 10.16451/j.cnki.issn1003-6059.201509003, PP. 788-794

Keywords: 数据降维,矢量量化,等距映射,流形学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对等距映射(ISOMAP)无监督、不能生成显式映射函数等局限性,提出矢量量化地标点的显式监督等距映射算法.该算法首先在构建的邻域图和测地线距离矩阵中引入类别信息;然后针对在迭代优化处理距离矩阵时引入地标点的问题,运用矢量量化方法代替传统随机选取方法,使选取的地标点更能反映整个流形结构;最后把径向基函数作为函数基,得到降维方法的显式映射表示.在手写数字数据集和UCI数据集上的实验表明,文中算法降维效果快速稳定,识别率较高.

References

[1]  Martinez A M, Kak A C. PCA versus LDA. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233
[2]  Cox T F, Cox M A A. Multidimensional Scaling. London, UK: Chapman& Hall, 1994
[3]  Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500): 2319-2323
[4]  Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290(5500): 2323-2326
[5]  Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 2003, 15(6): 1373-1396
[6]  Zhang Z Y, Zha H Y. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment. Journal of Shanghai University: English Edition, 2004, 8(4): 406-424
[7]  Wu W T. The Application of Manifold Learning Algorithms in Pattern Recognition. Master Dissertation. Shanghai, China: Shanghai Jiao Tong University, 2013 (in Chinese) (吴文通.流形学习方法在模式识别中的应用研究.硕士学位论文.上海:上海交通大学, 2013)
[8]  Geng X, Zhan D C, Zhou Z H. Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Trans on Systems, Man, and Cybernetics: Cybernetics, 2005, 35(6): 1098-1107
[9]  Li Y. Building K-Edge-Connected Neighborhood Graph for Distance-Based Data Projection. Pattern Recognition Letters, 2005, 26(13): 2015-2021
[10]  Zhang Z, Chow T W S, Zhao M B. M-Isomap: Orthogonal Constrained Marginal Isomap for Nonlinear Dimensionality Reduction. IEEE Trans on Cybernetics, 2013, 43(1): 180-191
[11]  Sun W W, Halevy A, Benedetto J J, et al. UL-Isomap Based Nonlinear Dimensionality Reduction for Hyperspectral Imagery Classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89: 25-36
[12]  Vlachos M, Domeniconi C, Gunopulos D, et al. Non-linear Dimensionality Reduction Techniques for Classification and Visualization // Proc of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002: 645-651
[13]  Wei B L. Video Analysis Using Semi-supervised Manifold Lear-ning. Master Dissertation. Xi′an, China: Xidian University, 2011 (in Chinese)(魏博兰.半监督流形学习算法在视频分析中的应用.硕士学位论文.西安:西安电子科技大学, 2011)
[14]  Cheng Q C,Wang H Y,Feng Y. A Multi-class Multi-manifold Learning Algorithm Based on ISOMAP // Proc of the Chinese Conference on Pattern Recognition. Nanjing, China, 2009. DOI: 10.1109/CCPR.2009.5343987
[15]  Wu Y M, Chan K L. An Extended Isomap Algorithm for Learning Multi-class Manidold // Proc of the International Conference on Machine Learning and Cybernetics. Shanghai, China, 2004, VI: 3429-3433
[16]  Cho M,Park H. Nonlinear Dimension Reduction Using ISOMap Based on Class Information // Proc of the International Joint Conference on Neural Networks. Atlanta, USA, 2009: 566-570
[17]  de Silva V. Tenenbaum J B. Global versus Local Methods in Nonlinear Dimensionality Reduction [EB/OL].[2014-06-30].http://web.mit.edu/cocosci/Papers/nips 02-localglobal-in-press.pdf
[18]  Webb A R. Multidimensional Scaling by Iterative Majorization Using Radial Basis Functions. Pattern Recognition, 1995, 28(5): 753-759
[19]  Zhang J P, Li S Z, Wang J. Manifold Learning and Applications in Recognition // Tan Y P, Yap K H, Wang L P, eds. Intelligent Multimedia Processing with Soft Computing. Berlin, Germany: Springer-Verlag, 2004: 281-300

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133