全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多核学习的画像画风的识别*

DOI: 10.16451/j.cnki.issn1003-6059.201509007, PP. 822-827

Keywords: 多核学习,部件,特征,画像,画风识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

画像的画风识别广泛应用于名画甄别和刑侦破案领域.文中提出基于多核学习的画像画风的识别算法.首先根据艺术评论家从画像部件的处理方式鉴定画像画风的方法,从画像中提取脸、左眼、右眼、鼻和嘴5个部件.然后根据画家从画像的明暗度和画像作者的绘画笔法识别画像画风的方法,从每个部件上提取灰度直方图特征、灰度矩特征、快速鲁棒特征和多尺度的局部二值模式特征.最后通过多核学习将不同部件和不同特征融合以进行画像画风的识别.实验表明,文中算法性能较好,能取得较高识别率.

References

[1]  Friedman J, Hastie T, Tibshirani R. Additive Logistic Regression: A Statistical View of Boosting. The Annals of Statistics, 2000, 28(2): 337-407
[2]  Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1999
[3]  Cutzu F, Hammoud R, Leykin A. Estimating the Photorealism of Images: Distinguishing Paintings from Photograph // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, USA, 2003, II: 305-312
[4]  Li J, Wang J Z. Studying Digital Imagery of Ancient Paintings by Mixtures of Stochastic Models. IEEE Trans on Image Processing, 2004, 13(3): 340-353
[5]  Zhang M J, Li J, Wang N N, et al. Recognition of Facial Sketch Styles. Neurocomputing: Part C, 2015, 149: 1188-1197
[6]  Edwards B. The New Drawing on the Right Side of the Brain. New York, USA: Tarcher, 2009
[7]  Dodson B. Keys to Drawing. Blue Hill, USA: North Light Book, 1990
[8]  Bay H, Tuytelaars T, Gool L V. SURF: Speeded Up Robust Features // Proc of the 9th European Conference on Computer Vision. Graz, Austria, 2006, I: 404-417
[9]  Kennedy J, Eberhart R. Particle Swarm Optimization // Proc of the IEEE International Conference on Neural Networks. Perth, Austra-lia, 1995, IV: 1942-1948
[10]  Klare B F, Li Z F, Jain A K. Matching Forensic Sketches to Mug Shot Photos. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33(3): 639-646
[11]  Pavlidis P, Weston J, Cai J S, et al. Gene Functional Classification from Heterogeneous Data // Proc of the 5th Annual International Conference on Computational Biology. Montreal, Canada, 2001: 249-255
[12]  Bennett K P, Momma M, Embrechts M J. MARK: A Boosting Algorithm for Heterogeneous Kernel Models // Proc of the 8th ACM-SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002: 24-31
[13]  Ben-Hur A, Noble W S. Kernel Methods for Predicting Protein-Protein Interactions. Bioinformatics, 2005, 21(1): 38-46
[14]  Lewis D P, Jebara T, Noble W S. Nonstationary Kernel Combination // Proc of the 23rd International Conference on Machine Learning. Pittsburgh, USA, 2006: 553-560
[15]  Sonnenburg S, Rtsch G, Schfer C, et al. Large Scale Multiple Kernel Learning. Journal of Machine Learning Research, 2006, 7: 1531-1565
[16]  Bach F R. Consistency of the Group Lasso and Multiple Kernel Learning. Journal of Machine Learning Research, 2008, 9: 1179-1225
[17]  Ong C S, Smola A J, Williamson R C. Learning the Kernel with Hyperkernels. Journal of Machine Learning Research, 2005, 6: 1043-1071
[18]  Kingsbury N, Tay D B H, Palaniswami M. Multi-scale Kernel Methods for Classification // Proc of the IEEE Workshop on Machine Learning for Signal Processing. Mystic, USA, 2005: 43-48
[19]  Zheng D N, Wang J X, Zhao Y N. Non-flat Function Estimation with a Multi-scale Support Vector Regression. Neurocomputing, 2006, 70(1/2/3): 420-429
[20]  Yang Z, Guo J, Xu W R, et al. Multi-scale Support Vector Machine for Regression Estimation // Proc of the 3rd International Symposium on Neural Networks. Chengdu, China, 2006: 1030-1037
[21]  Lanckriet G R G, Cristianini N, Bartlett P, et al. Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine Learning Research, 2004, 5: 27-72
[22]  Lee W J, Verzakov S, Duin R P W. Kernel Combination versus Classifier Combination // Proc of the 7th International Workshop on Multiple Classifier Systems. Prague, Czech Republic, 2007: 22-31
[23]  Rakotomamonjy A, Bach F R, Canu S, et al. More Efficiency in Multiple Kernel Learning [EB/OL].[2014-08-20].http://www.di.ens.fr/~fbach/mkl_descent.pdf
[24]  Rakotomamonjy A, Bach F R, Canu S, et al. Simple MKL. Journal of Machine Learning Research, 2008, 9: 2491-2521
[25]  Bucak S S, Jin R, Jain A K. Multiple Kernel Learning for Visual Object Recognition: A Review. IEEE Trans on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1354-1369
[26]  Xia H, Hoi S C H, Jin R, et al. Online Multiple Kernel Similarity Learning for Visual Search. IEEE Trans on Pattern Analysis and Machine Intelligence, 2014, 36(3): 536-549
[27]  Li C, Georgiopoulos M, Anagnostopoulos G C. A Unifying Framework for Typical Multitask Multiple Kernel Learning Problems. IEEE Trans on Neural Networks and Learning Systems, 2014, 25(7): 1287-1297
[28]  Gao X B, Gao F, Tao D C, et al. Universal Blind Image Quality Assessment Metrics via Natural Scene Statistics and Multiple Kernel Learning. IEEE Trans on Neural Networks and Learning Systems, 2013, 24(12): 2013-2026

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133