Friedman J, Hastie T, Tibshirani R. Additive Logistic Regression: A Statistical View of Boosting. The Annals of Statistics, 2000, 28(2): 337-407
[2]
Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1999
[3]
Cutzu F, Hammoud R, Leykin A. Estimating the Photorealism of Images: Distinguishing Paintings from Photograph // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, USA, 2003, II: 305-312
[4]
Li J, Wang J Z. Studying Digital Imagery of Ancient Paintings by Mixtures of Stochastic Models. IEEE Trans on Image Processing, 2004, 13(3): 340-353
[5]
Zhang M J, Li J, Wang N N, et al. Recognition of Facial Sketch Styles. Neurocomputing: Part C, 2015, 149: 1188-1197
[6]
Edwards B. The New Drawing on the Right Side of the Brain. New York, USA: Tarcher, 2009
[7]
Dodson B. Keys to Drawing. Blue Hill, USA: North Light Book, 1990
[8]
Bay H, Tuytelaars T, Gool L V. SURF: Speeded Up Robust Features // Proc of the 9th European Conference on Computer Vision. Graz, Austria, 2006, I: 404-417
[9]
Kennedy J, Eberhart R. Particle Swarm Optimization // Proc of the IEEE International Conference on Neural Networks. Perth, Austra-lia, 1995, IV: 1942-1948
[10]
Klare B F, Li Z F, Jain A K. Matching Forensic Sketches to Mug Shot Photos. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33(3): 639-646
[11]
Pavlidis P, Weston J, Cai J S, et al. Gene Functional Classification from Heterogeneous Data // Proc of the 5th Annual International Conference on Computational Biology. Montreal, Canada, 2001: 249-255
[12]
Bennett K P, Momma M, Embrechts M J. MARK: A Boosting Algorithm for Heterogeneous Kernel Models // Proc of the 8th ACM-SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002: 24-31
[13]
Ben-Hur A, Noble W S. Kernel Methods for Predicting Protein-Protein Interactions. Bioinformatics, 2005, 21(1): 38-46
[14]
Lewis D P, Jebara T, Noble W S. Nonstationary Kernel Combination // Proc of the 23rd International Conference on Machine Learning. Pittsburgh, USA, 2006: 553-560
[15]
Sonnenburg S, Rtsch G, Schfer C, et al. Large Scale Multiple Kernel Learning. Journal of Machine Learning Research, 2006, 7: 1531-1565
[16]
Bach F R. Consistency of the Group Lasso and Multiple Kernel Learning. Journal of Machine Learning Research, 2008, 9: 1179-1225
[17]
Ong C S, Smola A J, Williamson R C. Learning the Kernel with Hyperkernels. Journal of Machine Learning Research, 2005, 6: 1043-1071
[18]
Kingsbury N, Tay D B H, Palaniswami M. Multi-scale Kernel Methods for Classification // Proc of the IEEE Workshop on Machine Learning for Signal Processing. Mystic, USA, 2005: 43-48
[19]
Zheng D N, Wang J X, Zhao Y N. Non-flat Function Estimation with a Multi-scale Support Vector Regression. Neurocomputing, 2006, 70(1/2/3): 420-429
[20]
Yang Z, Guo J, Xu W R, et al. Multi-scale Support Vector Machine for Regression Estimation // Proc of the 3rd International Symposium on Neural Networks. Chengdu, China, 2006: 1030-1037
[21]
Lanckriet G R G, Cristianini N, Bartlett P, et al. Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine Learning Research, 2004, 5: 27-72
[22]
Lee W J, Verzakov S, Duin R P W. Kernel Combination versus Classifier Combination // Proc of the 7th International Workshop on Multiple Classifier Systems. Prague, Czech Republic, 2007: 22-31
[23]
Rakotomamonjy A, Bach F R, Canu S, et al. More Efficiency in Multiple Kernel Learning [EB/OL].[2014-08-20].http://www.di.ens.fr/~fbach/mkl_descent.pdf
[24]
Rakotomamonjy A, Bach F R, Canu S, et al. Simple MKL. Journal of Machine Learning Research, 2008, 9: 2491-2521
[25]
Bucak S S, Jin R, Jain A K. Multiple Kernel Learning for Visual Object Recognition: A Review. IEEE Trans on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1354-1369
[26]
Xia H, Hoi S C H, Jin R, et al. Online Multiple Kernel Similarity Learning for Visual Search. IEEE Trans on Pattern Analysis and Machine Intelligence, 2014, 36(3): 536-549
[27]
Li C, Georgiopoulos M, Anagnostopoulos G C. A Unifying Framework for Typical Multitask Multiple Kernel Learning Problems. IEEE Trans on Neural Networks and Learning Systems, 2014, 25(7): 1287-1297
[28]
Gao X B, Gao F, Tao D C, et al. Universal Blind Image Quality Assessment Metrics via Natural Scene Statistics and Multiple Kernel Learning. IEEE Trans on Neural Networks and Learning Systems, 2013, 24(12): 2013-2026