全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于在线聚类的背景减法*

, PP. 35-41

Keywords: 在线聚类,信息融合,运动分割,背景减法

Full-Text   Cite this paper   Add to My Lib

Abstract:

假定“背景总是以较大的频率出现”的基础上,提出一种基于在线聚类的背景减法.利用在线聚类对一段时间内像素的灰度值进行分类,选择出现频率大于阈值的灰度类作为该像素的背景,这样可以较好地构建出单模态或多模态场景的背景.一旦背景被构建好,通过融合背景差分、邻域背景差分和帧间差分的信息提取前景,实现正确而完整的运动目标分割.仿真实验表明,即使在背景有微小运动的复杂环境下,算法仍能较好地构建背景,运动分割效果较好.

References

[1]  Talukder A, Goldberg S, Matthies L, et al. RealTime Detection of Moving Objects in a Dynamic Scene from Moving Robotic Vehicles // Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA, 2003, Ⅱ: 13081313
[2]  Meier T, Nagan K N. Automatic Segmentation of Moving Objects for Video Object Plane Generation. IEEE Trans on Circuits and Systems for Video Technology, 1998, 8(5): 525538
[3]  Long W, Yang Y. Stationary Background Generation: An Alternative to the Difference of Two Images. Pattern Recognition, 1990, 23(12): 13511359
[4]  Gloyer B, Aghajan H K, Siu K Y, et al. VideoBased Freeway Monitoring System Using Recursive Vehicle Tracking. Proc of the SPIE, 1995, 2421: 173180
[5]  Kornprobst P, Deriche R, Aubert G. Image Sequence Analysis via Partial Differential Equations. Journal of Mathematical Imaging and Vision, 1999, 11(1): 526
[6]  Cucchiara R, Grana C, Piccardi M, et al. Detecting Moving Objects, Ghosts, and Shadows in Video Streams. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(10): 13371342
[7]  Hou Zhiqiang, Han Chongzhao. A Background Reconstruction Algorithm Based on Pixel Intensity Classification in Remote Video Surveillance System // Proc of the 7th International Conference on Information Fusion. Stockholm, Sweden, 2004: 754759
[8]  Wren C R, Azarbayejani A, Darrell T, et al. Pfinder: RealTime Tracking of the Human Body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780785
[9]  Stauffer C, Grimson W E L. Adaptive Background Mixture Models for RealTime Tracking // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA, 1999, Ⅱ: 246252
[10]  Javed O, Shafique K, Shah M. A Hierarchical Approach to Robust Background Subtraction Using Color and Gradient Information // Proc of IEEE Workshop on Motion and Video Computing. Orlando, USA, 2002: 2227
[11]  Lee D S, Hull J J, Erol B. A Bayesian Framework for Gaussian Mixture Background Modeling // Proc of the International Conference on Image Processing. Barcelona, Spain, 2003, Ⅲ: 973976
[12]  Zivkovic Z, van der Heijden. Recursive Unsupervised Learning of Finite Mixture Models. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(5): 651656
[13]  Elgammal A, Harwood D, Davis L. NonParametric Model for Background Subtraction // Proc of the 6th European Conference on Computer Vision. Dublin, Ireland, 2000: 751767
[14]  Ridder C, Munkelt O, Kirchner H. Adaptive Background Estimation and Foreground Detection Using KalmanFilter // Proc of the International Conference on Recent Advances in Mechatronics. Istanbul, Turkey, 1995: 193199
[15]  Toyama K, Krumm J, Brumitt B, et al. Wallflower: Principles and Practice of Background Maintenance // Proc of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece, 1999, Ⅰ: 255261
[16]  Herrero E, Orrite C, Senar J. Detected Motion Classification with a DoubleBackground and a NeighborhoodBased Difference. Pattern Recognition Letters, 2003, 24(12): 20792092
[17]  Duda R O, Hart P E, Stork D G. Pattern Classification. 2nd Edition. New York, USA: John Wiley & Sons, 2004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133