全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

构造前向神经网络逼近多项式函数*

, PP. 331-335

Keywords: 神经网络,逼近,多元多项式

Full-Text   Cite this paper   Add to My Lib

Abstract:

首先用构造性的方法证明:对于任意的n阶多元多项式函数,可以构造一个三层前向神经网络以任意精度逼近该多项式,所构造网络的隐层节点个数仅与多项式的维数d和阶数n有关.然后,我们给出实现这一逼近的具体算法.最后,给出两个算例进一步验证所得的理论结果.本文结果对神经网络逼近多元多项式函数的具体网络构造以及实现这一逼近的方法等问题具有指导意义.

References

[1]  Cybenko G. Approximation by Superpositions of a Single Function. Mathematics of Control,Signals and Systems, 1989, 2(4): 303314
[2]  Courrieu P. Function Approximation on NonEuclidean Spaces. Neural Networks, 2005, 18(1): 91102
[3]  Hornik H. Approximation Capabilities of Multilayer Feedforward Networks. Neural Networks, 1991, 4(2): 251257
[4]  Chen Tianping, Chen Hong. Universal Approximation to Nonlinear Operators by Neural Networks with Arbitrary Activation Functions and Its Application to Dynamical Systems. IEEE Trans on Neural Networks, 1995, 6(4): 911917
[5]  Chen Tianping, Chen Hong,Liu R W. Approximation Capability in C(Rd) by Multilayer Feedforward Networks and Related Problems. IEEE Trans on Neural Networks, 1995, 6(1): 2530
[6]  Ciesielski K,Sacha P. Synthesis of Feed forward Networks in Supremum Error Bound. IEEE Trans on Neural Networks, 2000,11(6): 1213 1227
[7]  Barron A R. Universal Approximation Bounds for Superposition of a Sigmoidal Functions. IEEE Trans on Information Theory, 1993, 39(3): 930945
[8]  Mhaskar H N, Miccheli C A. Degree of Approximation by Neural Networks with A Single Hidden Layer. Advances in Applied Mathematics, 1995, 16(2): 151183
[9]  Suzuki S. Constructive Function Approximation by ThreeLayer Artificial Neural Networks. Neural Networks, 1998, 11(6): 10491058
[10]  Maiorov V,Meir R S. Approximation Bounds for Smooth Functions in C(Rd) by Neural and Mixture Networks. IEEE Trans on Neural Networks, 1998, 9(5): 969978
[11]  Cao Feilong, Xu Zongben. The Essential Order of Approximation for Neural Networks. Science in China: Series E, 2004, 34(4): 361373 (in Chinese) (曹飞龙,徐宗本.神经网络的本质逼近阶.中国科学E辑, 2004, 34(4): 361373)
[12]  Xu Zongben, Cao Feilong. Simultaneous Lp Approximation Order for Neural Networks. Neural Networks, 2005, 18(7): 914923
[13]  Cao Feilong, Xu Zongben, Liang Jieye. Approximation of Polynomial Functions by Neural Network: Construction of Network and Algorithm of Approximation. Chinese Journal of Computers, 2003,26 (8): 906912 (in Chinese) (曹飞龙,徐宗本,梁吉业.多项式函数的神经网络逼近:网络的构造与逼近算法.计算机学报, 2003, 26(8): 906912)
[14]  Hammer B, Gersmann K. A Note on the Universal Approximation Capability of Support Vector Machines. Neural Processing Letters, 2003, 17(1): 4353
[15]  Llanas B, Sainz F J. Constructive Approximate Interpolation by Neural Networks. Journal of Computational and Applied Mathematics, 2006, 188(2): 283308

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133