全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

交互式MultiAgent遗传算法*

, PP. 308-312

Keywords: 多智能体,交互式遗传算法,用户疲劳,服装设计

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种新的交互式MultiAgent遗传算法.该算法使固定在网格上的相邻智能体之间进行交叉、变异、死亡与再生操作和最优智能体本身进行自学习,来提高智能体的能量,从而使得算法获得较强的全局收敛能力和局部搜索能力.用户在每代进化中,只需选择感兴趣的个体,而不用评价每个个体的适应值,使得用户的评价操作变得简单易行.函数优化和服装设计的仿真实验表明算法能以较快的进化速度收敛,并使用户总评价次数减少,从而有效缓解用户的疲劳.

References

[1]  Caldwell C, Johnston V S. Tracking a Criminal Suspect through FaceSpace with a Genetic Algorithm // Proc of the 4th International Conference on Genetic Algorithms. San Mateo, USA: Morgan Kaufmann, 1991: 416421
[2]  Ohsaki M, Takagi H. Application of Interactive Evolutionary Computation to Optimal Tuning of Digital Hearing Aids // Proc of the International Conference on Soft Computing. Iizuka, Japan, 1998: 849852
[3]  Biles J A. Life with GenJam: Interacting with a Musical IGA // Proc of the International Conference on Systems, Man, and Cybernetics. Tokyo, Japan, 1999, Ⅲ: 652656
[4]  Ishino Y, Terano T. Marketing Data Analysis Using Simulated Breeding and Inductive Learning Techniques. Journal of Japan Society for Artificial Intelligence, 1997, 12(1): 121131
[5]  Wang Shangfei, Wang Shenghui, Wang Xufa. Improved Interactive Genetic Algorithm Incorporating with SVM and Its Application. Journal of Data Acquisition and Processing, 2003, 18(4): 429433 (in Chinese) (王上飞, 王胜惠, 王熙法. 结合SVM的交互式遗传算法及其应用. 数据采集与处理, 2003, 18(4): 429433)
[6]  Jiang Shanshan, Cao Xianbing, Wang Xufa. User’s Agent Model and Design Using IGA. Pattern Recognition and Artificial Intelligence, 2004, 17(2): 244249 (in Chinese) (蒋珊珊, 曹先彬, 王煦法. 基于IGA的用户Agent模型与设计. 模式识别与人工智能, 2004, 17(2): 244249)
[7]  Gong Dunwei, Hao Guosheng, Zhou Yong, et al. Hierarchical Interactive Evolutionary Computation and Its Application. Control and Decision, 2004, 19(10): 11171120,1124 (in Chinese) (巩敦卫, 郝国生, 周 勇,等. 分层交互式进化计算及其应用. 控制与决策, 2004, 19(10): 11171120,1124)
[8]  Hao Guosheng, Gong Dunwei, Shi Youqun, et al. Method of Replacing the User with Machine in Interactive Genetic Algorithm. Pattern Recognition and Artificial Intelligence, 2006, 19(1): 111115 (in Chinese) (郝国生,巩敦卫,史有群,等.交互式遗传算法的机器代替用户方法.模式识别与人工智能, 2006, 19(1): 111115)
[9]  Han Jing, Cai Qingsheng. Emergent Intelligence in AER Model. Pattern Recognition and Artificial Intelligence, 2002, 15(2): 134142 (in Chinese) (韩 靖, 蔡庆生. AER模型中的智能涌现. 模式识别与人工智能, 2002, 15(2): 134142)
[10]  Zhong Weicai, Xue Mingzhi, Liu Jing, et al. MultiAgent Genetic Algorithm Based on AER Model. Pattern Recognition and Artificial Intelligence, 2003, 16(4): 390396 (in Chinese) (钟伟才,薛明志,刘 静,等.基于AER模型的MultiAgent遗传算法.模式识别与人工智能, 2003, 16(4): 390396)
[11]  Zhong Weicai, Liu Jing, Liu Fang, et al. Combinatorial Optimization Using MultiAgent Evolutionary Algorithm. Chinese Journal of Computers, 2004, 27(10): 13411353 (in Chinese) (钟伟才,刘 静,刘 芳,等.组合优化多智能体进化算法.计算机学报, 2004, 27(10): 13411353)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133