全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

改进的KMSE方法及其实现*

, PP. 394-398

Keywords: 核Fisher鉴别分析(KFDA),核最小平方误差(KMSE),鉴别矢量,模式识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

依据KMSE模型对应的特征空间中的鉴别矢量可表示为部分训练样本的线性组合这一理论前提,可利用回归分析中变量选择的思路对KMSE模型加以改进.在本文中为了提高KMSE的分类效率而发展出的基于最小平方误差准则的算法能大大提升KMSE模型的分类速度.实验结果显示该算法还能取得较优的分类性能.

References

[1]  Xu Yong, Yang Jingyu, Yang Jian. A Reformative Kernel Fisher Discriminant Analysis. Pattern Recognition, 2004, 37(6): 12991302
[2]  Xu Yong, Yang Jingyu, Lu Jianfeng, et al. An Efficient Renovation on Kernel Fisher Discriminant Analysis and Face Recognition Experiments. Pattern Recognition, 2004, 37(10): 20912094
[3]  Xu Yong, Zhang D, Jin Zhong, et al. A Fast KernelBased Nonlinear Discriminant Analysis for MultiClass Problems. Pattern Recognition, 2006, 39(6): 10261033
[4]  Chen Xiru, Wang Songgui. Modern Pratical Regression Analysis. Nanning, China: Guangxi Renmin Press, 1984 (in Chinese) (陈希孺,王松桂. 近代实用回归分析.南宁:广西人民出版社, 1984)
[5]  Golub G H, van Loan C F. Matrix Computations. 3rd Edition. Baltimore, UK: John Hopkins University Press, 1996
[6]  van Gestel T, Suykens J A K, Lanckriet G, et al. Bayesian Framework for LeastSquares Support Vector Machine Classifiers, Gaussian Processes, and Kernel Fisher Discriminant Analysis. Neural Computation, 2002, 14(5): 11151147
[7]  Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers. Neural Processing Letters, 1999, 9(3): 293300
[8]  Xu Jianhua, Zhang Xuegong, Li Yanda. Kernel MSE Algorithm: A Unified Framework for KFD, LSSVM and KRR // Proc of the International Joint Conference on Neural Networks. Washington, USA, 2001: 14861491
[9]  Bian Zhaoqi, Zhang Xuegong. Pattern Recognition. Beijing, China: Tsinghua University Press, 2000 (in Chinese) (边肇祺,张学工.模式识别.北京:清华大学出版社, 2000)
[10]  Billings S A, Lee K L. Nonlinear Fisher Discriminant Analysis Using a Minimum Squared Error Cost Function and the Orthogonal Least Squares Algorithm. Neural Networks, 2002, 15(2): 263270
[11]  Chen S, Hong X, Harris C J. Sparse Kernel Regression Modeling Using Combined Locally Regularized Orthogonal Least Squares and DOptimality Experimental Design. IEEE Trans on Automatic Control, 2003, 48(6): 10291036
[12]  Mika S, Ratsch G, Weston J, et al. Fisher Discriminant Analysis with Kernels // Proc of the IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing. Madison, USA, 1999, IX: 4148
[13]  Mika S, Smola A J, Scholkopf B. An Improved Training Algorithm for Kernel Fisher Discriminants // Proc of the 8th International Workshop on Artificial Intelligence and Statistics. San Francisco, USA, 2001: 98104
[14]  Xu Yong, Yang Jingyu, Lu Jianfeng. An Efficient KernelBased Nonlinear Regression Method for TwoClass Classification // Proc of the International Conference on Machine Learning and Cybernetics. Guangzhou, China, 2005, Ⅶ: 44424445
[15]  Tipping M E. Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research, 2001, 1(3): 211244

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133