全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于免疫原理的个性化Spam过滤算法*

, PP. 406-414

Keywords: 人工免疫系统,垃圾邮件,个性化,社区

Full-Text   Cite this paper   Add to My Lib

Abstract:

受生物免疫系统工作机制的启发,本文提出一种基于免疫原理的个性化Spam过滤算法.其主要思想是根据用户兴趣和邮件特征定义垃圾邮件社区,将各垃圾邮件归类于不同的垃圾邮件社区,抽取各个垃圾邮件社区的特征并用一组特征检测器来表示,检测时通过判断待检测邮件是否归属于某垃圾邮件社区来进行过滤.该算法是一个增量学习算法,能连续过滤垃圾邮件.算法中免疫学习与免疫记忆机制的采用不仅能提高垃圾邮件过滤的检出率与正确率还能加快邮件过滤的速度.文中通过测试实验和分析表明,本文算法的垃圾邮件过滤性能优于AISEC与NaveBayesian算法.

References

[1]  de Castro L N, Timmis J. Artificial Immune Systems: A New Computational Intelligence Approach. London, UK: SpringerVerlag, 2002
[2]  Deepak P, John J, Parameswaran S. A Community Based Approach for Spam Filtering // Proc of the International Conference on Information and Communication Technologies: From Theory to Applications. Damascus, Syria, 2004: 611612
[3]  Deepak P, Parameswaran S. Spam Filtering Using Spam Mail Communities // Proc of the Symposium on Applications and the Internet. Trento, Italy, 2005: 377383
[4]  Zhang Zeming, Luo Wenjian, Wang Xufa. A Multilevel Spam Filtering Algorithm Based on Artificial Immunity. Acta Electronica Sinica, 2006, 34(9): 16161620 (in Chinese) (张泽明,罗文坚,王煦法.一种基于人工免疫的多层垃圾邮件过滤算法.电子学报, 2006, 34(9): 16161620)
[5]  IResearch Inc. China AntiSpam Market Research Report [EB/OL]. [20050701]. http://www.iresearch.com.cn/ html/free/Default.html
[6]  Pelletier L, Almhana J, Choulakian V. Adaptive Filtering of SPAM // Proc of the 2nd Annual Conference on Communication Networks and Services Research. Fredericton, Canada, 2004: 218224
[7]  Androutsopoulos I, Koutsias J, Chandrinos K V, et al. An Experimental Comparison of Nave Bayesian and KeywordBased AntiSpam Filtering with Personal Email Message // Proc of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Athens, Greece, 2000: 160167
[8]  Sahami M, Dumais S, Heckerman D, et al. A Bayesian Approach to Filtering Junk Email // Proc of AAAI Workshop on Learning for Text Categorization. Madison, USA, 1998: 5562
[9]  Moon J, Shon T, Seo J, et al. An Approach for Spam Email Detection with Support Vector Machine and nGram Indexing. Lecture Notes in Computer Science, 2004, 3280: 351362
[10]  Drucker H, Wu D, Vapnik V. Support Vector Machines for Spam Categorization. IEEE Trans on Neural Networks, 1999, 10(5): 10481054
[11]  Secker A, Freitas A, Timmis J. AISEC: an Artificial Immune System for Email Classification // Proc of the Congress on Evolutionary Computation. Canberra, Australia, 2003, Ⅰ: 131138
[12]  Oda T, White T. Increasing the Accuracy of a SpamDetecting Artificial Immune System // Proc of the Congress on Evolutionary Computation. Canberra, Australia, 2003, Ⅰ: 390396
[13]  Oda T, White T. Developing an Immunity to Spam // Proc of the Genetic and Evolutionary Computation Conference. Chicago, USA, 2003: 231242
[14]  Cao Yukun, Liao Xiaofeng, Li Yunfeng. An Email Filtering Approach Using Neural Network // Proc of the International Symposium on Neural Networks. Dalian, China, 2004: 688694
[15]  Zhan Chuan, Lu Xianliang, Xing Qian. A Novel AntiSpam Email Approach Based on LVQ // Proc of the 5th International Conference on Parallel and Distributed Computing: Applications and Technologies. Singapore, Singapore, 2004: 180183
[16]  Kim J, Bentley P J. Negative Selection and Niching by an Artificial Immune System for Network Intrusion Detection // Proc of the Conference on Genetic and Evolutionary Computation. Orlando, USA, 1999: 149158
[17]  Mo Hongwei. The Principle and Application of Artificial Immune System. Harbin, China: Harbin Institute of Technology Press, 2003 (in Chinese) (莫宏伟. 人工免疫系统原理与应用. 哈尔滨: 哈尔滨工业大学出版社, 2003)
[18]  Luo Wenjian. Research on Artificial Immune Models and Algorithms for Intrusion Detection. Ph.D Dissertation. Hefei, China: University of Science and Technology of China. Department of Computer Science and Technology, 2003 (in Chinese) (罗文坚. 面向入侵检测的人工免疫模型和算法研究. 博士学位论文.合肥:中国科学技术大学.计算机科学技术系,2003)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133