Chew H G, Crisp D J, Bogner R E, et al. Target Detection in Radar Imagery Using Support Vector Machines with Training Size Biasing [EB/OL]. [20010101]. http://users.on.net/~hgchew/SVM/ChewCrispBognerLimICARCV2000.pdf
[2]
Chew H G, Bogner R E, Lim C C. Dual vSupport Vector Machines with Error Rate and Training Size Biasing // Proc of the International Conference on Acoustics, Speech and Signal Processing. Salt Lake City, USA, 2001: 12691272
[3]
Lin C F, Wang S D. Fuzzy Support Vector Machines. IEEE Trans on Neural Networks, 2002, 13(2): 464471
[4]
Tao Qin, Wu Gaowei, Wang Feiyue, et al. Posterior Probability Support Vector Machines for Unbalanced Data. IEEE Trans on Neural Networks, 2005, 16(6): 15611573
[5]
Golub G H, van Loan C C. Matrix Computations. Baltimore, USA: The John Hopkins University Press, 1996
[6]
Lee Y J, Mangasarian O L. RSVM: Reduced Support Vector Machines. Technical Report, 0007, Madison, USA: University of Wisconsin. Data Mining Institute, 2000
[7]
Murphy M. UCIBenchmark Repository of Artificial and Real Data Sets [DB/OL]. [20060401]. http://www.ics.uci.edu/~mlearn
[8]
Mitchell T M. Machine Learning. Boston, USA: McGrawHill, 1997
[9]
Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: SpringerVerlag, 2000
[10]
Cortes C, Vapnik V. Support Vector Networks. Machine Learning, 1995, 20(3): 273297
[11]
Drucker H, Burges C J C, Kaufman L, et al. Support Vector Regression Machines // Mozer M C, Jordan M I, Petsche T, eds. Advances in Neural Information Processing Systems. Cambridge, UK: MIT Press, 1997: 155161
[12]
Platt J C. Fast Training of Support Vector Machines Using Sequential Minimal Optimization // Schlkopf B, Burges C, Smola A, eds. Advances in Kernel MethodsSupport Vector Learning. Cambridge, UK: MIT Press, 1999: 185208
[13]
Osuna E, Freund R, Girosi F. An Improved Training Algorithm for Support Vector Machines // Proc of the International Workshop on Neural Networks for Signal Processing. Amelia Island, USA, 1997: 276285
[14]
Keerthi S, Shevade S, Bhattcharyya C, et al. Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computation, 2001, 13(3): 637649
[15]
Suykens J A K, Vandewalle J. Least Squares Support Vector Machines. Neural Network Letters, 1999, 9(3): 293300
[16]
Mangasarian O L. Generalized Support Vector Machines // Smola A, Bartlett P, Schlkopf B, et al, eds. Advances in Large Margin Classifier. Cambridge, UK: MIT Press, 2000: 135146
[17]
Fung G, Mangasarian O L. Proximal Support Vector Machine Classifiers // Proc of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001: 7786
[18]
Agarwal D K, DuMouchel W. Shrinkage Estimator Generalizations of Proximal Support Vector Machines // Proc of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002: 173182