全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自适应并行蚁群算法

, PP. 458-462

Keywords: 蚁群算法,自适应,并行

Full-Text   Cite this paper   Add to My Lib

Abstract:

蚁群算法是一种模拟进化算法,具有很强的全局搜索能力.本文提出一种自适应的并行蚁群算法(APACO),该算法可以根据不同的搜索阶段,自适应确定参数的最优组合,在一定程度上避免停滞现象的出现并加速算法收敛.而且自适应的迁移策略可以较大丰富系统多样性的同时也较大降低子蚁群间的通信量,有效提高算法的搜索质量和缩短算法的运行时间.最后选用中国CHN144问题对该算法进行检验,结果显示该算法具有较好的稳定性和较快的收敛速度.

References

[1]  Tsai C F, Tsai C W, Tseng C C. A New Hybrid Heuristic Approach for Solving Large Traveling Salesman Problem. Information Sciences, 2004, 166(1/2/3/4): 6781
[2]  Chu S C, Roddick J F, Pan J S. Ant Colony System with Communication Strategies. Information Sciences, 2004, 167(1/2/3/4): 6376
[3]  Favuzza S, Graditi G, Sanseverino E R. Adaptive and Dynamic Ant Colony Search Algorithm for Optimal Distribution Systems Reinforcement Strategy. Applied Intelligence, 2006, 24(1): 3142
[4]  Wu Qinghong, Zhang Jihui, Xu Xinhe. An Ant Colony Algorithm with Mutation Features. Journal of Computer Research and Development, 1999, 36(10): 12401245 (in Chinese) (吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法.计算机研究与发展, 1999, 36(10): 12401245)
[5]  Chen Ling, Shen Jie, Qin Ling, et al. An Adaptive Ant Colony Algorithm Based on Equilibrium of Distribution. Journal of Software, 2003, 14(8): 13791387 (in Chinese) (陈 崚,沈 洁,秦 玲,等.基于分布均匀度的自适应蚁群算法.软件学报, 2003, 14(8): 13791387)
[6]  Stützle T. Parallelization Strategies for Ant Colony Optimization // Eiben A E, Back T, Schoenauer M, et al, eds. Lecture Notes in Computer Science. Berlin, Germany: SpringerVerlag, 1998, 1498: 722741
[7]  Foster I. Designing and Building Parallel Programs. Reading, USA: AddisonWeslley, 1994
[8]  Matsumura T, Nakamura M, Okech J, et al. A Parallel and Distributed Genetic Algorithm on LooselyCoupled Multiprocessor System. IEICE Trans on Fundamentals of Electronics, Communications and Computer Sciences, 1998, 81(4): 540546
[9]  Yu Bin, Cheng Chuntian, Yang Zhongzhen, et al. CoarseGrain Parallel Ant Colony Optimization Algorithm. Systems Engineering and Electronics, 2006, 28(4): 626629 (in Chinese) (于 滨,程春田,杨忠振,等.一种改进的粗粒度并行蚁群算法.系统工程与电子技术, 2006, 28(4): 626629)
[10]  Dorigo M, Maniezzo V, Colorni A. The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans on Systems, Man and Cybernetics, 1996, 26(1): 2941
[11]  Kang Lishan, Xie Yun, You Shiyong, et al. NonNumerical Parallel Algorithm-the Simulated Annealing Algorithm. Beijing, China: Science Press, 2000: 149153 (in Chinese) (康立山,谢 云,尤矢勇,等.非数值并行算法——模拟退火算法.北京:科学出版社, 2000: 149153)
[12]  Stützle T, Hoos H. MAXMIN Ant System and Local Search for Combinatorial Optimization Problems // Vos S S, Osman M I H, Roucairol C, eds. MetaHeuristics: Advances and Trends in Local Search Paradigms for Optimization. Boston, USA: Kluwer Academic, 1999: 313329

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133