全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种稀疏最小二乘支持向量分类机*

, PP. 681-687

Keywords: 最小二乘支持向量机(LSSVM),稀疏性,中心距离比值,边界向量

Full-Text   Cite this paper   Add to My Lib

Abstract:

一般的支持向量分类机需要求解二次规划问题,最小二乘支持向量机只需求解一个线性方程组,但其缺乏稀疏性.为了改进最小二乘支持向量分类机,本文结合中心距离比值及增量学习的思想提出一种基于预选、筛选支持向量的稀疏最小二乘支持向量机.该方法既能弥补最小二乘向量机的稀疏性,减少计算机的存储量和计算量,加快最小二乘支持向量机的训练速度和决策速度,又能对非均衡训练数据造成的分类面的偏移进行纠正,还不影响最小二乘支持向量机的分类能力.3组实验结果也证实了这一点.

References

[1]  Vapnik V N. The Nature of Statistical Learning Theory. Berlin, Germany: SpringerVerlag, 1995 (Vapnik V N.统计学习理论.许建华,张学工,译.北京:电子工业出版社, 2004)
[2]  Deng Naiyang, Tian Yingjie. Support Vector Machines: New Methods in Data Mining. Beijing, China: Science Press, 2004 (in Chinese) (邓乃扬,田英杰.数据挖掘中的新方法——支持向量机.北京:科学出版社, 2004)
[3]  Xue Yi. Support Vector Machine and Math Programming. Ph.D Dissertation. Beijing, China: Beijing University of Technology. College of Applied Sciences, 2003 (in Chinese) (薛 毅.支持向量机与数学规划.博士学位论文.北京:北京工业大学.应用数理学院, 2003)
[4]  Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers. Neural Process Letters, 1999, 9(3): 293300
[5]  Suykens J A K, Lukas L, Vandewalle J. Sparse Least Squares Support Vector Machine Classifiers // Proc of the European Symposium on Artificial Neural Networks. Bruges, Belgium, 2000: 3742
[6]  Zhang Li, Zhou Weida, Jiao Licheng. PreExtracting Support Vectors for Support Vector Machine // Proc of the 5th International Conference on Signal Processing. Beijing, China, 2000, Ⅱ: 14321435
[7]  Zhang Li. Support Vector Machine and Kernel. Ph.D Dissertation. Xi’an, China: Xidian University. Key Laboratory of Radar Signal Processing, 2002 (in Chinese) (张 莉.支撑矢量机与核方法研究.博士学位论文.西安:西安电子科技大学.雷达信号处理重点实验室, 2002)
[8]  Cortes C, Vapnik N. Support Vector Networks. Machine Learning, 1995, 20(3): 273297
[9]  Domeniconi C, Gunopulos D. Incremental Support Vector Machine Construction // Proc of IEEE International Conference on Data Mining. San Jose, USA, 2001: 589593
[10]  Blake C L, Merz C J. UCI Repository of Machine Learning Databases [DB/OL]. [20051226]. http://www.ics.uci.edu/~mlearn/databases

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133