全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于数据域描述的图像压缩方法*

, PP. 643-648

Keywords: 数据域描述,加权支持向量机(w-SVM),离散余弦变换,图像压缩

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于数据域描述的自适应加权支持向量回归图像压缩算法.先将一幅灰度图像分割成不重叠的方块,每个方块数据经过离散余弦变换得到对应的频率域系数,然后根据样本到高维特征空间最小包含超球球心的距离构建相应的加权函数模型,最后将确立的模型应用到基于加权支持向量回归的图像压缩方案中.实验结果表明,与同类的图像压缩算法相比,该算法在预测性能和压缩效果方面获得较明显提高.

References

[1]  Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995
[2]  Cortes C, Vapnik V N. Support Vector Networks. Machine Learning, 1995, 20(3): 273-297
[3]  Vapnik V N. An Overview of Statistical Learning Theory. IEEE Trans on Neural Networks, 1999, 10(5): 988-999
[4]  Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167
[5]  Smola A J, Schlkopf B. A Tutorial on Support Vector Regression. Technical Report, NC2-TR-1998-030, London, UK: University of London. Royal Holloway College, 1998
[6]  Weston J, Gammerman A, Stitson M O, et al. Density Estimation Using Support Vector Machines. Technical Report, CSD-TR-97-23, London, UK: University of London. Royal Holloway College, 1998
[7]  Müller K R, Smola A T, Rtsch G, et al. Predicting Time Series with Support Vector Machines // Proc of the 7th International Conference on Artificial Neural Networks. Lausanne, Switzerland, 1997: 999-1004
[8]  Chapelle O, Haffner P, Vapnik V N. Support Vector Machines for Histogram-Based Image Classification. IEEE Trans on Neural Networks, 1999, 10(5): 1055-1064
[9]  Lu J W, Plataniotis K N, Venetsanopoulos A N. Face Recognition Using Kernel Direct Discriminant Analysis Algorithms. IEEE Trans on Neural Networks, 2003, 14(1): 117-126
[10]  Kim K I, Jung K, Park S H, et al. Supervised Texture Segmentation Using Support Vector Machines. Electronics Letters, 1999, 35(22): 1935-1937
[11]  Robinson J, Kecman V. The Use of Support Vector Machines in Image Compression // Proc of the International Conference on Engineering Intelligent Systems. Scotland, UK, 2000: 93-96
[12]  Robinson J, Kecman V. Combining Support Vector Machine Learning with the Discrete Cosine Transform in Image Compression. IEEE Trans on Neural Networks, 2003, 14(4): 950-958
[13]  Li Shutao, Kwok J T Y, Tsang I W H, et al. Fusing Images with Different Focuses Using Support Vector Machines. IEEE Trans on Neural Networks, 2004, 15(6): 1555-1561
[14]  Wallace G K. The JPEG Still Picture Compression Standard. Communications of the ACM, 1991, 34(4): 30-44
[15]  Gómez-Pérez G, Camps-Valls G, Gutiérrez T, et al. Perceptual Adaptive Insensitivity for Support Vector Machine Image Coding. IEEE Trans on Neural Networks, 2005, 16(6): 1574-1581
[16]  Li Yuancheng, Jiao Runhai, Li Bo. Wavelet Image Compression Based on Support Vector Machines. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(5): 598-602 (in Chinese) (李元诚,焦润海,李 波.一种基于支持向量机的小波图像压缩方法.北京航空航天大学学报, 2006, 32(5): 598-602)
[17]  Zhao Nannan, Sun Hongxing, Xu Xinhe. An Approach of Image Compression Based on Wavelet Transform and SVM // Proc of the International Conference on Sensing, Computing and Automation. Chongqing, China, 2006: 817-822
[18]  Tax D M J, Duin R P W. Data Domain Description Using Support Vectors // Proc of the European Symposium on Artificial Neural Networks. Bruges, Belgium, 1999: 251-256
[19]  Tax D M J, Duin R P W. Support Vector Domain Description. Pattern Recognition Letters, 1999, 20(11/12/13): 1191-1199
[20]  Khayam S A. The Discrete Cosine Transform: Theory and Application [EB/OL]. [2003-12-10]. http://www.egr.msu.edu/waves/people/Ali_files/DCT_TR802.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133