Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995
[2]
Cortes C, Vapnik V N. Support Vector Networks. Machine Learning, 1995, 20(3): 273-297
[3]
Vapnik V N. An Overview of Statistical Learning Theory. IEEE Trans on Neural Networks, 1999, 10(5): 988-999
[4]
Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167
[5]
Smola A J, Schlkopf B. A Tutorial on Support Vector Regression. Technical Report, NC2-TR-1998-030, London, UK: University of London. Royal Holloway College, 1998
[6]
Weston J, Gammerman A, Stitson M O, et al. Density Estimation Using Support Vector Machines. Technical Report, CSD-TR-97-23, London, UK: University of London. Royal Holloway College, 1998
[7]
Müller K R, Smola A T, Rtsch G, et al. Predicting Time Series with Support Vector Machines // Proc of the 7th International Conference on Artificial Neural Networks. Lausanne, Switzerland, 1997: 999-1004
[8]
Chapelle O, Haffner P, Vapnik V N. Support Vector Machines for Histogram-Based Image Classification. IEEE Trans on Neural Networks, 1999, 10(5): 1055-1064
[9]
Lu J W, Plataniotis K N, Venetsanopoulos A N. Face Recognition Using Kernel Direct Discriminant Analysis Algorithms. IEEE Trans on Neural Networks, 2003, 14(1): 117-126
[10]
Kim K I, Jung K, Park S H, et al. Supervised Texture Segmentation Using Support Vector Machines. Electronics Letters, 1999, 35(22): 1935-1937
[11]
Robinson J, Kecman V. The Use of Support Vector Machines in Image Compression // Proc of the International Conference on Engineering Intelligent Systems. Scotland, UK, 2000: 93-96
[12]
Robinson J, Kecman V. Combining Support Vector Machine Learning with the Discrete Cosine Transform in Image Compression. IEEE Trans on Neural Networks, 2003, 14(4): 950-958
[13]
Li Shutao, Kwok J T Y, Tsang I W H, et al. Fusing Images with Different Focuses Using Support Vector Machines. IEEE Trans on Neural Networks, 2004, 15(6): 1555-1561
[14]
Wallace G K. The JPEG Still Picture Compression Standard. Communications of the ACM, 1991, 34(4): 30-44
[15]
Gómez-Pérez G, Camps-Valls G, Gutiérrez T, et al. Perceptual Adaptive Insensitivity for Support Vector Machine Image Coding. IEEE Trans on Neural Networks, 2005, 16(6): 1574-1581
[16]
Li Yuancheng, Jiao Runhai, Li Bo. Wavelet Image Compression Based on Support Vector Machines. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(5): 598-602 (in Chinese) (李元诚,焦润海,李 波.一种基于支持向量机的小波图像压缩方法.北京航空航天大学学报, 2006, 32(5): 598-602)
[17]
Zhao Nannan, Sun Hongxing, Xu Xinhe. An Approach of Image Compression Based on Wavelet Transform and SVM // Proc of the International Conference on Sensing, Computing and Automation. Chongqing, China, 2006: 817-822
[18]
Tax D M J, Duin R P W. Data Domain Description Using Support Vectors // Proc of the European Symposium on Artificial Neural Networks. Bruges, Belgium, 1999: 251-256
[19]
Tax D M J, Duin R P W. Support Vector Domain Description. Pattern Recognition Letters, 1999, 20(11/12/13): 1191-1199
[20]
Khayam S A. The Discrete Cosine Transform: Theory and Application [EB/OL]. [2003-12-10]. http://www.egr.msu.edu/waves/people/Ali_files/DCT_TR802.pdf