全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于PSO的分层策略搜索算法*

, PP. 98-103

Keywords: 分层强化学习,粒子群优化算法(PSO),分层策略,协商僵局

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对分层策略梯度强化学习算法(HPGRL)易陷入局部最优点等问题,提出一种分层策略搜索算法(PSOHPS).首先由设计者按照经典分层强化学习MAXQ方法的思想构建子任务分层结构,通过与环境的直接交互,PSOHPS利用具有较强全局搜索能力的粒子群对各复合子任务中的参数化策略进行进化,以获得优化的动作策略.最后以协商僵局消解的实验验证PSOHPS是有效的,其性能明显优于HPGRL.

References

[1]  Baxter J, Bartlett P L. InfiniteHorizon PolicyGradient Estimation. Journal of Artificial Intelligence Research, 2001, 15(4): 319350
[2]  Ghavamzadeh M. Hierarchical Reinforcement Learning in Continuous State and MultiAgent Environments. Ph.D Dissertation. Amherst, USA: University of Massachusetts. Graduate School, 2005
[3]  Ghavamzadeh M, Mahadevan S. Hierarchical Policy Gradient Algorithms // Proc of the 20th International Conference on Machine Learning. Washington, USA, 2003: 226233
[4]  Dietterich T G. Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition. Journal of Artificial Intelligence Research, 2000, 13(1): 227303
[5]  Ghavamzadeh M, Mahadevan S, Makar R. Hierarchical Multiagent Reinforcement Learning. Journal of Autonomous Agents and MultiAgent Systems, 2006, 13(2): 197229
[6]  Hu Xiaohui, Shi Yuhui, Eberhart R. Recent Advances in Particle Swarm // Proc of the IEEE Congress on Evolutionary Computation. Portland, USA, 2004, Ⅰ: 9097
[7]  Peng Zhiping, Peng Hong, Zheng Qilun. Study on Bilateral and MultiIssue Autonomous Negotiation Model. Journal of Electronics & Information Technology, 2007, 29(3): 733738 (in Chinese) (彭志平,彭 宏,郑启伦.一种双边多议题自治协商模型的研究.电子与信息学报, 2007, 29(3): 733738)
[8]  Gao Yang, Chen Shifu, Lu Xin. Research on Reinforcement Learning Technology: A Review. Acta Automatica Sinica, 2004, 30(1): 86100 (in Chinese) (高 阳,陈世福,陆 鑫.强化学习研究综述.自动化学报, 2004, 30(1): 86100)
[9]  Barto A G, Mahadevan S. Recent Advances in Hierarchical Reinforcement Learning. Discrete Event Dynamic Systems: Theory and Applications, 2003, 13(4): 4177
[10]  Li Wei, Ye Qingtai, Zhu Changming. Application of Hierarchical Reinforcement Learning in Engineering Domain. Journal of Systems Science and Systems Engineering, 2005, 14(2): 207217
[11]  Puterman M. Markov Decision Processes. New York, USA: Wiley, 1994
[12]  Su Chang, Gao Yang, Chen Shifu, et al. The Study of Recognizing Options Based on SMDP. Pattern Recognition and Artificial Intelligence, 2005, 18(6): 679684 (in Chinese) (苏 畅,高 阳,陈世福,等.基于SMDP环境的自主生成options算法的研究.模式识别与人工智能, 2005, 18(6): 679684)
[13]  Watkins C T, Dayan P. QLearning. Machine Learning, 1992, 8(3): 279292

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133